【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
【答案】(1)①1;②40°;(2),90°;(3)AC的長為3或2.
【解析】
(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;
②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;
(2)根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,則,由全等三角形的性質(zhì)得∠AMB的度數(shù);
(3)正確畫圖形,當(dāng)點C與點M重合時,有兩種情況:如圖3和4,同理可得:△AOC∽△BOD,則∠AMB=90°,,可得AC的長.
(1)問題發(fā)現(xiàn):
①如圖1,
∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
(2)類比探究:
如圖2,,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴ ,∠CAO=∠DBO,
在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸:
①點C與點M重合時,如圖3,
同理得:△AOC∽△BOD,
∴∠AMB=90°,,
設(shè)BD=x,則AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x-2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x2)2=(2)2,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
∴AC=3;
②點C與點M重合時,如圖4,
同理得:∠AMB=90°,,
設(shè)BD=x,則AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x+2)2=(2)2.
x2+x-6=0,
(x+3)(x-2)=0,
x1=-3,x2=2,
∴AC=2;.
綜上所述,AC的長為3或2.
點睛:本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,幾何變換問題,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運用類比的思想解決問題,本題是一道比較好的題目.
【題型】解答題
【結(jié)束】
25
【題目】如圖,已知拋物線y=ax2+bx﹣3(a≠0)經(jīng)過點A(3,0),B(﹣1,0).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2﹣2x﹣3;(2)M (3)P的坐標(biāo)為(1+ ,3)或(1﹣,3)或(2,﹣3).
【解析】
(1)把點A(3,0),B(-1,0)代入二次函數(shù)表達(dá)式,即可求解;
(2)利用△AON≌△COB(AAS),求出N(0,-1),即可求解;
(3)分BC為平行四邊形的一條邊、BC為平行四邊形的對角線兩種情況,求解即可
解:(1)∵拋物線y=ax2+bx﹣3(a≠0)經(jīng)過點A(3,0),B(﹣1,0).
∴ ,解得: ,
∴該拋物線解析式為y=x2﹣2x﹣3;
(2)若以點A為圓心的圓與直線BC相切于點M,則AM⊥BC,
如圖,過點A作AM⊥BC,垂足為點M,交y軸與點N.
把x=0代入y=x2﹣2x﹣3得,y=﹣3,
∴C(0,﹣3),
∵A(3,0),B(﹣1,0),
∴OA=OC,OB=1,
∵AM⊥BC,
∴∠AMB=∠AON=∠BOC=90°,
∴∠BAM+∠OBC=∠BAM+∠ONA=90°,
∴∠ONA=∠OBC,
∴△AON≌△COB(AAS),
∴ON=OB=1,
∴N(0,﹣1),
設(shè)直線AM解析式為y=k1x+b1,
把A(3,0),N(0,﹣1)分別代入得 ,
解得: ,
∴直線AM解析式為y=x﹣1…①,
設(shè)直線BC解析式為y=k2x+b2,
同理可得:直線BC解析式為y=﹣3x﹣3…②,
聯(lián)立①②并解得: ,
則M(﹣ ,﹣ );
(3)存在以點B,C,Q,P為頂點的四邊形是平行四邊形,
①當(dāng)BC為平行四邊形的一條邊時,如圖CBP′Q′,
點C(0,﹣3)向上3個單位、向左1個單位得到點B(﹣1,0),
同理點Q′(m,0)向上3個單位、向左1個單位得到點P′(m﹣1,3),
將點P′坐標(biāo)代入二次函數(shù)表達(dá)式并解得:x=2 ,
故點P′坐標(biāo)為(1+ ,3)或(1﹣,3);
②當(dāng)BC為平行四邊形的對角線時,如圖CPBQ,
點P的坐標(biāo)為(2,﹣3);
P的坐標(biāo)為(1+,3)或(1﹣,3)或(2,﹣3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC與⊙O相切于點B,CD與⊙O相切于點D,連結(jié)AD.
(1)求證:AD∥OC.
(2)小聰與小明在做這個題目的時候,對∠CDA與∠AOC之間的關(guān)系進行了探究:
小聰說,∠CDA+∠AOC的值是一個固定的值;
小明說,∠CDA+∠AOC的值隨∠A度數(shù)的變化而變化.
若∠CDA+∠AOC的值為y,∠A度數(shù)為x.你認(rèn)為他們之中誰說的是正確的?若你認(rèn)為小聰說的正確,請你求出這個固定值:若你認(rèn)為小明說的正確,請你求出y與x之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關(guān)信息如表:
原進價(元/張) | 零售價(元/張) | 成套售價(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元購進的餐桌數(shù)量與用160元購進的餐椅數(shù)量相同.
(1)求表中a的值;
(2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進貨,才能獲得最大利潤?最大利潤是多少?
(3)由于原材料價格上漲,每張餐桌和餐椅的進價都上漲了10元,但銷售價格保持不變.商場購進了餐桌和餐椅共200張,應(yīng)怎樣安排成套銷售的銷售量(至少10套以上),使得實際全部售出后,最大利潤與(2)中相同?請求出進貨方案和銷售方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永康市某校在課改中,開設(shè)的選修課有:籃球,足球,排球,羽毛球,乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,李老師對九(1)班全班同學(xué)的選課情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖).
(1)該班共有學(xué)生 人,并補全條形統(tǒng)計圖;
(2)求“籃球”所在扇形圓心角的度數(shù);
(3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請你用列表或畫樹狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D、E分別在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,則BE=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,延長AB到點P,過點P作圓O的切線,切點為C,連接AC,且AC=CP.
(1)求∠P的度數(shù);
(2)若點D是弧AB的中點,連接CD交AB于點E,且DE·DC=20,求⊙O的面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某海盜船以20海里/小時的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達(dá)C處,求出此時海監(jiān)船與島嶼P之間的距離(即PC的長,結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com