【題目】如圖,已知:在△ABC中,∠A=90°,AB=AC=1,P是AC上不與A、C重合的一動(dòng)點(diǎn),PQ⊥BC于Q,QR⊥AB于R.
(1)求證:PQ=CQ;
(2)設(shè)CP的長(zhǎng)為x,QR的長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍,并在平面直角坐標(biāo)系作出函數(shù)圖象.
(3)PR能否平行于BC?如果能,試求出x的值;若不能,請(qǐng)簡(jiǎn)述理由.
【答案】(1)證明見(jiàn)解析;(2)y=﹣x+(0<x<1);(3)PR不能平行于BC.
【解析】試題分析:(1)根據(jù)題意易得△ABC是等腰直角三角形,則∠B=∠C=45°,然后利用PQ⊥CQ可得到△PCQ為等腰直角三角形,由此得證;
(2)根據(jù)等腰直角三角形的性質(zhì)求出BC=AB=,CQ=PC=x,同理可證得△BQR是等腰直角三角形,則BQ=RQ=y,所以可得y+x=,變形可求出解析式,然后描點(diǎn)畫(huà)圖即可;
(3)由AR=1–y,AP=1–x,則AR=1–(–x+1),當(dāng)AR=AP時(shí),PR∥BC,所以1–(–x+1)=1–x,解得x=,然后利用0<x<1可判斷.
試題解析:(1)∵∠A=90°,AB=AC=1,
∴△ABC為等腰直角三角形,
∴∠B=∠C=45°,
∵PQ⊥CQ,
∴△PCQ為等腰直角三角形,
∴PQ=CQ;
(2)解:∵△ABC為等腰直角三角形,
∴BC=AB=,
∵△PCQ為等腰直角三角形,
∴CQ=PC=x,
同理可證得為△BQR等腰直角三角形,
∴BQ=RQ=y,
∵BQ+CQ=BC,
∴y+x=,
∴y=–x+1(0<x<1),
如圖,
(3)能.
理由如下:
∵AR=1–y,AP=1–x,
∴AR=1–(–x+1),
當(dāng)AR=AP時(shí),PR∥BC,
即1–(–x+1)=1–x,
解得x=,
∵0<x<1,∴PR能平行于BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形ABCD中,點(diǎn)E、F、G分別是邊AD、AB、BC的中點(diǎn),連接EP、FG.
(1)如圖1,直接寫(xiě)出EF與FG的關(guān)系____________;
(2)如圖2,若點(diǎn)P為BC延長(zhǎng)線上一動(dòng)點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,得到線段FH,連接EH.
①求證:△FFE≌△PFG;②直接寫(xiě)出EF、EH、BP三者之間的關(guān)系;
(3)如圖3,若點(diǎn)P為CB延長(zhǎng)線上的一動(dòng)點(diǎn),連接FP,按照(2)中的做法,在圖(3)中補(bǔ)全圖形,并直接寫(xiě)出EF、EH、BP三者之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有個(gè)填寫(xiě)運(yùn)算符號(hào)的游戲:在“”中的每個(gè)□內(nèi),填入中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:;
(2)若請(qǐng)推算□內(nèi)的符號(hào);
(3)在“”的□內(nèi)填入符號(hào)后,使計(jì)算所得數(shù)最小,直接寫(xiě)出這個(gè)最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是一個(gè)水文站在雨季對(duì)某條河一周內(nèi)水位變化情況的記錄.其中,水位上升用正數(shù)表示,水位下降用負(fù)數(shù)表示(水位變化的單位:m).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
變化 | +0.4 | -0.3 | -0.4 | -0.3 | +0.2 | +0.2 | +0.1 |
注:①表中記錄的數(shù)據(jù)為每天12時(shí)的水位與前一天12時(shí)的水位的變化量.
②上周日12時(shí)的水位高度為2m.
(1)請(qǐng)你通過(guò)計(jì)算說(shuō)明本周末水位是上升了還是下降了;
(2)用折線圖表示本周每天的水位,并根據(jù)折線圖說(shuō)明水位在本周內(nèi)的升降趨勢(shì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c所表示的數(shù)在數(shù)軸上的位置如圖所示:
(1)化簡(jiǎn):│a-1│-│c+b│+│b-1│;
(2)若a+b+c=0,且b與-1的距離和c與-1的距離相等,求:-a2+2b-c-(a-4c-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1:y=2x+4與y軸交于A點(diǎn),與x軸交于點(diǎn)B,經(jīng)過(guò)A點(diǎn)的直線l2與直線l1所夾的銳角為45°.
(1)過(guò)點(diǎn)B作CB⊥AB,交l2于C,求點(diǎn)C的坐標(biāo).
(2)求l2的函數(shù)解析式.
(3)在直線l1上存在點(diǎn)M,直線l2上存在點(diǎn)N,使得點(diǎn)A、O、M、N四點(diǎn)組成的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com