【題目】如圖,拋物線的表達(dá)式為y=ax2+4ax+4a-1(a≠0),它的圖像的頂點為A,與x軸負(fù)半軸相交于點B、點C(點B在點C左側(cè)),與y軸交于點D,連接AO交拋物線于點E,且S△AEC:S△CEO=1:3.
(1)求點A的坐標(biāo)和拋物線表達(dá)式;
(2)在拋物線的對稱軸上是否存在一點P,使得△BDP的內(nèi)心也在對稱軸上,若存在,求點P的坐標(biāo);若不存在,請說明理由;
(3)連接BD,點Q是y軸左側(cè)拋物線上的一點,若以Q為圓心,為半徑的圓與直線BD相切,求點Q的坐標(biāo).
【答案】(1)拋物線表達(dá)式為y=x2+4x+3 ;(2)P(-2,-3);(3)Q(-4,3).
【解析】
(1)根據(jù)拋物線的對稱軸易求得頂點坐標(biāo),再根據(jù)S△AEC:S△CEO=1:3,求得OE:OA=3:4,再證得△OFE∽△OMA,求得點E的坐標(biāo),從而求得答案;
(2)根據(jù)內(nèi)心的定義知∠BPM=∠DPM,設(shè)點P(-2,b),根據(jù)三角函數(shù)的定義求得,繼而求得的值,從而求得答案;
(3)設(shè)Q(m,m2+4m+3),分類討論,①點Q在BD左上方拋物線上,②點Q在BD下方拋物線上,利用的不同計算方法求得的值,從而求得答案.
(1)由拋物線y=ax2+4ax+4a-1得對稱軸為直線,當(dāng)時,,
∴ ,
∵S△AEC:S△CEO=1:3 ,
∴AE:OE=1:3 ,
∴OE:OA=3:4,
過點E作EF⊥x軸,垂足為點F,設(shè)對稱軸與x軸交點為M,如圖,
∵EF//AM ,
∴△OFE∽△OMA ,
∴ ,
∴ ,
∴ ,
把點代入拋物線表達(dá)式y=ax2+4ax+4a-1得
,
解得:a=1,
∴拋物線表達(dá)式為:y=x2+4x+3 ;
(2)三角形的內(nèi)心是三個角平分線的交點,
∴∠BPM=∠DPM,
過點D作DH⊥AM,垂足為點H,設(shè)點P(-2,b),
∵tan∠BPM=tan∠DPM ,
∴,
∴,
∴,
∴P(-2,-3),
(3)∵拋物線表達(dá)式為:y=x2+4x+3 ,
∴拋物線與軸和軸的交點坐標(biāo)分別為:B(-3,0) ,C(-1,0) ,D(0,3) ,
∴,
∴
設(shè)Q(m,m2+4m+3),
①點Q在BD左上方拋物線上,如圖:作BG⊥x軸交BD于G,QF⊥x軸交于F,作QE⊥BD于E,
設(shè)直線QD的解析式為:,
∵點Q的坐標(biāo)為(m,m2+4m+3)代入得:,
∴直線QD的解析式為:,
當(dāng)時,,
∴點G的坐標(biāo)為; ,
∴
,
∵,
∴,
即:,
解得:或(不合題意,舍去) ,
∴點的坐標(biāo)為:);
②點Q在BD下方拋物線上,如圖:QF⊥x軸交于F,交BD于G,作QE⊥BD于E,
設(shè)直線BD的解析式為:,
將點B(-3,0)代入得:,
∴直線BD的解析式為:,
當(dāng)時,,
∴點G的坐標(biāo)為; ,
∴
,
∵,
∴,
即:,
∵
∴方程無解,
綜上:點的坐標(biāo)為:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))在解一元二次方程的時候,發(fā)現(xiàn)有一類形如x2+(m+n)x+mn=0的方程,其常數(shù)項是兩個因數(shù)的積,而它的一次項系數(shù)恰好是這兩個因數(shù)的和,則我們可以把它轉(zhuǎn)化成x2+(m+n)x+mn=(m+x)(m+n)=0
(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可轉(zhuǎn)化為(x+2)(x+3)=0,即x+2=0或x+3=0,進(jìn)而可求解.
(歸納)若x2+px+q=(x+m)(x+n),則p= q= ;
(應(yīng)用)
(1)運(yùn)用上述方法解方程x2+6x+8=0;
(2)結(jié)合上述材料,并根據(jù)“兩數(shù)相乘,同號得正,異號得負(fù)“,求出一元二次不等式x2﹣2x﹣3>0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列代數(shù)式:ab,ac,a+b+c,a-b+c, 2a+b,2a-b中,其值為正的代數(shù)式的個數(shù)為( )
A.2個B.3個C.4個D.4個以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸交于點,與反比例函數(shù)的圖象交于,兩點,的面積為.
(1)求一次函數(shù)的解析式;
(2)求點坐標(biāo)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測得C在點B的北偏西60°方向上.
(1)MN是否穿過原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ACB=90°,點D為AB邊上的動點(點D不與點A,點B重合),過點D作ED⊥CD交直線AC于點E,已知∠A=30°,AB=4cm,在點D由點A到點B運(yùn)動的過程中,設(shè)AD=xcm,AE=ycm.
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(說明:補(bǔ)全表格時相關(guān)數(shù)值,保留一位小數(shù))
(2)在如圖2的平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AE=AD時,AD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的頂點均落在格點上.
(1)將△ABC繞點O順時針旋轉(zhuǎn)90°后,得到△A1B1C1.在網(wǎng)格中畫出△A1B1C1;
(2)求線段OA在旋轉(zhuǎn)過程中掃過的圖形面積;(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com