【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列代數(shù)式:ab,ac,a+b+c,a-b+c, 2a+b,2a-b中,其值為正的代數(shù)式的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.4個(gè)以上
【答案】A
【解析】
根據(jù)拋物線的開(kāi)口向下可判斷a的符號(hào),根據(jù)拋物線對(duì)稱(chēng)軸的位置可判斷ab的符號(hào),根據(jù)拋物線與y軸的交點(diǎn)可判斷c的符號(hào),進(jìn)而可判斷ac的符號(hào);
由于x=1時(shí),y=a+b+c,x=-1時(shí),y=a-b+c,結(jié)合圖象即可判斷a+b+c與a-b+c的符號(hào);
由對(duì)稱(chēng)軸為直線并結(jié)合a的符號(hào)可判斷2a+b的符號(hào),由a、b的符號(hào)即可判斷2a-b的符號(hào),從而可得答案.
解:∵圖象的開(kāi)口向下,∴a<0,∵圖象與y軸的交點(diǎn)在x軸下方,∴c<0,∴ac>0;
∵對(duì)稱(chēng)軸在y軸右側(cè),∴,∴ab<0;
由圖可知,當(dāng)x=1時(shí),y=a+b+c>0,當(dāng)x=-1時(shí),y=a-b+c<0;
∵,a<0,∴-b>2a,∴2a+b<0;
∵a<0,b>0,∴2a-b<0.
綜上,其值為正的代數(shù)式有2個(gè).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)D、E、F分別在BC、AB、CA上,且DE∥CA,DF∥BA,則下列三種說(shuō)法:
①如果∠BAC=90°,那么四邊形AEDF是矩形
②如果AD平分∠BAC,那么四邊形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形
其中正確的有( 。
A.3個(gè);B.2個(gè);C.1個(gè);D.0個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱(chēng)軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④當(dāng)y<0時(shí),x<﹣1或x>2.其中正確的有( 。
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC=5, AB=6, 點(diǎn)D為AC上一點(diǎn),作DE//AB交BC于點(diǎn)E,點(diǎn)C關(guān)于DE的對(duì)稱(chēng)點(diǎn)為點(diǎn)O,以OA為半徑作⊙O恰好經(jīng)過(guò)點(diǎn)C,并交直線DE于點(diǎn)M,N.則MN的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點(diǎn)A(4,0)和點(diǎn)C,與y軸交于點(diǎn)B.
(1)求拋物線解析式和點(diǎn)B坐標(biāo);
(2)在x軸上有一動(dòng)點(diǎn)P(m,0)過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)N,交拋物線與點(diǎn)M,當(dāng)點(diǎn)M位于第一象限圖象上,連接AM,BM,求△ABM面積的最大值及此時(shí)M點(diǎn)的坐標(biāo);
(3)如圖2,點(diǎn)B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,連接AD,BC.
①填空:點(diǎn)P是線段AC上一點(diǎn)(不與點(diǎn)A、C重合),點(diǎn)Q是線段AB上一點(diǎn)(不與點(diǎn)A、B重合),則兩條線段之和PQ+BP的最小值為 ;
②填空:將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a(0°<α<180°),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在△ABD的邊所在直線上時(shí),則此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是上任意一點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的表達(dá)式為y=ax2+4ax+4a-1(a≠0),它的圖像的頂點(diǎn)為A,與x軸負(fù)半軸相交于點(diǎn)B、點(diǎn)C(點(diǎn)B在點(diǎn)C左側(cè)),與y軸交于點(diǎn)D,連接AO交拋物線于點(diǎn)E,且S△AEC:S△CEO=1:3.
(1)求點(diǎn)A的坐標(biāo)和拋物線表達(dá)式;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使得△BDP的內(nèi)心也在對(duì)稱(chēng)軸上,若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接BD,點(diǎn)Q是y軸左側(cè)拋物線上的一點(diǎn),若以Q為圓心,為半徑的圓與直線BD相切,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD與∠ABC的平分線AE、BF交于點(diǎn)P,連接PD,則tan∠ADP的值為( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com