【題目】問題背景:在中,邊上的動點運動(與,不重合),點與點同時出發(fā),由點沿的延長線方向運動(不與重合),連結(jié)于點,點是線段上一點.

1)初步嘗試:如圖,若是等邊三角形,,且點,的運動速度相等,求證:.

小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:

思路一:過點,交于點,先證,再證,從而證得結(jié)論成立;

思路二:過點,交的延長線于點,先證,再證,從而證得結(jié)論成立.

請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分)

2)類比探究:如圖,若在中,,,且點,的運動速度之比是,求的值;

3)延伸拓展:如圖,若在中,,,記,且點的運動速度相等,試用含的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過程).

【答案】1)證明見解析;(2;(3.

【解析】

1)過點DDGBC,交AC于點G,先證明△ADG是等邊三角形,得出GD=AD=CE,再證明GH=AH,由ASA證明△GDF≌△CEF,得出GF=CF,即可得出結(jié)論;

2)過點DDGBC,交AC于點G,先證出AH=GH=GDAD=GD,由題意AD=CE,得出GD=CE,再證明△GDF≌△CEF,得出GF=CF,即可得出結(jié)論;

3)過點DDGBC,交AC于點G,先證出DG=DH=AH,再證明△ADG∽△ABC,△ADG∽△DGH,△DGH∽△ABC,得出,△DGH∽△ABC,得出,證明△DFG∽△EFC,得出,即可得出結(jié)果.

解:(1)證明:選擇思路一:

如題圖1,過點,交于點,

是等邊三角形,∴,.

是等邊三角形..

,∴.

,∴.

..

,即.

2)如圖2,過點,交于點,

,

,∴.

,.

由題意可知,,∴.

,∴,.

..

,即.

.

3,理由如下:

過點DDGBC,交AC于點G,如圖3所示:

則∠ADG=B,∠AGD=ACB
AB=AC,∠BAC=36°,
∴∠ACB=B=ADG=AGD=72°,
∵∠ADH=BAC=36°,
AH=DH,∠DHG=72°=AGD
DG=DH=AH,△ADG∽△ABC,△ADG∽△DGH,

∴△DGH∽△ABC,

,

,

DGBC
∴△DFG∽△EFC,

,

,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動點,連接AE,AD,DE.

填空:

①當(dāng)的長度是____________時,四邊形ABDE是菱形;

②當(dāng)的長度是____________時,△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點EF分別在邊BCDC上,連接AEBF,AEBF,點M、N分別在邊AB、DC上,連接MN,若MNBC,FN1BE2,則BM_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與直線交于點,則______

【答案】-1

【解析】

將點A的坐標(biāo)代入兩直線解析式得出關(guān)于mb的方程組,解之可得.

解:由題意知,

解得,

故答案為:

【點睛】

本題主要考查兩直線相交或平行問題,解題的關(guān)鍵是掌握兩直線的交點坐標(biāo)必定同時滿足兩個直線解析式.

型】填空
結(jié)束】
11

【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CEAD于點F,則△AFC的面積等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點EBC邊上一點且CE=2BE,點F為對角線BD上一點且BF=2DF,連接AEBD于點G,過點FFHAE于點H,連結(jié)CH、CF,若HG=2cm,則CHF的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個交點,則m=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,點C是⊙O上一動點,過點C作⊙O直徑CD,過點BBECD于點E.已知AB=6cm,設(shè)弦AC的長為x cmB,E兩點間的距離為y cm(當(dāng)點C與點A或點B重合時,y的值為0)

小冬根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小冬的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

0. 99

1. 89

2. 60

2. 98

m

0

經(jīng)測量m的值為_____;(保留兩位小數(shù))

(2)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖

象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BE=2時,AC的長度約為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠,跳高(分別用 T1、T2 表示).

(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P ;

(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;

(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為

查看答案和解析>>

同步練習(xí)冊答案