【題目】如圖是8×8的正方形網(wǎng)格,請?jiān)谒o網(wǎng)格中按下列要求操作:

1)在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(﹣2,4),點(diǎn)B的坐標(biāo)為(﹣4,2);

2)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).

①此時點(diǎn)C的坐標(biāo)為   ,△ABC的周長為   (結(jié)果保留根號);

②畫出△ABC關(guān)于y軸對稱的△AB'C(點(diǎn)A,B,C的對應(yīng)點(diǎn)分別A'B',C),并寫出AB,C的坐標(biāo).

【答案】1)見解析;(2)①(﹣1,1),2+2;②作圖見解析,A2,4),B42),C11).

【解析】

1)根據(jù)A點(diǎn)的坐標(biāo),即可確定坐標(biāo)系的位置;

2在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個以AB為底的等腰三角形,則C一定在AB的中垂線上,通過作圖即可確定C的位置;根據(jù)勾股定理即可求得三角形的周長;依據(jù)軸對稱的性質(zhì),即可得到△ABC關(guān)于y軸對稱的△A'B'C',即可得到A′B′,C′的坐標(biāo).

解:(1)如圖,平面直角坐標(biāo)系如下:

2如圖,C點(diǎn)坐標(biāo)為(﹣1,1),

AB2,BCAC,

所以△ABC的周長是2+2

故答案為(﹣11),2+2

如圖,△A'B'C'即為所求,A′2,4),B′4,2),C′1,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線經(jīng)過點(diǎn)M1,3)和N35

1)試判斷該拋物線與x軸交點(diǎn)的情況;

2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A﹣2,0),且與y軸交于點(diǎn)B,同時滿足以A、OB為頂點(diǎn)的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、分別表示步行與騎車在同一路上行駛的路程(千來)與時間(小時)之間的關(guān)系.

1出發(fā)時與相距______千米.

2走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時間是______小時.

3出發(fā)后______小時與相遇.

4)求出行走的路程與時間的函數(shù)關(guān)系式.

5)若的自行車不發(fā)生故障,保持出發(fā)時的速度前進(jìn),那么幾小時與相遇?相遇點(diǎn)離的出發(fā)點(diǎn)多少千米?請同學(xué)們在圖中畫出這個相遇點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿AC剪開,得到△ABC和△ACD.

(1)將圖1中的△ABC繞點(diǎn)A順時針旋轉(zhuǎn)∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過點(diǎn)C′C′EAC,交DC的延長線于點(diǎn)E,試判斷四邊形ACEC′的形狀,并說明理由.

(2)若將圖1中的△ABC繞點(diǎn)A順時針旋轉(zhuǎn),使BA,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過點(diǎn)AAFCC′于點(diǎn)F,延長AF至點(diǎn)G,使FGAF,連接CGC′G,試判斷四邊形ACGC′的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,點(diǎn)的坐標(biāo)為,點(diǎn)為線段上的動點(diǎn)(點(diǎn)不與、重合),連接,作,且,過點(diǎn)軸,垂足為點(diǎn).

1)求證:;

2)猜想的形狀并證明結(jié)論;

3)如圖2,當(dāng)為等腰三角形時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩角及其中一角的平分線對應(yīng)相等的兩個三角形全等_____命題.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑畫⊙O,交AC于點(diǎn)D,半徑OEBD,連接BE,DE,BD,設(shè)BEAC于點(diǎn)F,若∠DEBDBC

(1)求證:BC是⊙O的切線;

(2)若BFBC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,

(1)求∠BAD∠DAC的度數(shù);

(2)若DE平分∠ADB,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,用配方法求最值.

已知a,b為非負(fù)實(shí)數(shù),∵a+b﹣2=(2+2﹣2=(20,a+b2,當(dāng)且僅當(dāng)“a=b”時,等號成立.示例:當(dāng)x0時,求y=x++1的最小值;

解:y=(x++12=3,當(dāng)x=,即x=1時,y的最小值為3.

(1)探究:當(dāng)x0時,求y=的最小值;

(2)問題解決:隨著人們生活水平的提高,汽車已成為越來越多家庭的交通工具,假設(shè)某種汽車的購車費(fèi)用為10萬元,每年應(yīng)繳保險(xiǎn)費(fèi)等各類費(fèi)用共計(jì)0.4萬元,n年的保養(yǎng),維修費(fèi)用總和為萬元,問這種汽車使用多少年報(bào)廢最合算(即使用多少年的年平均費(fèi)用最少,年平均費(fèi)用=所有費(fèi)用:年數(shù)n)?最少年平均費(fèi)用為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案