【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,翻折∠B,∠D,使點B,D兩點重合于對角線BD上一點P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時,點P是菱形ABCD的中心;
②當(dāng)x= 時,EF+GH>AC;
③當(dāng)0<x<2時,六邊形AEFCHG面積的最大值是
④當(dāng)0<x<2時,六邊形AEFCHG周長的值不變.
其中正確結(jié)論是 . (填序號)

【答案】①④
【解析】解:∵菱形ABCD的邊長為2,

∴AB=BC=2,

∵∠ABC=60°,

∴AC=AB=2,BD=2

由折疊知,△BEF是等邊三角形,

當(dāng)x=1時,則AE=1,

∴BE=AB﹣AE=1,

由折疊知,BP=2× = = BD,

∴點P是菱形ABCD的對角線的交點,

即:點P是菱形ABCD的中心,所以①正確,

如圖,

∵AE=x,

∴BE=AB﹣AE=2﹣x,

∵△BEF是等邊三角形,

∴EF=BE=2﹣x,

∴BM= EM= × EF= (2﹣x),

∴BP=2BM= (2﹣x),

∴DP=BD﹣BP=2 (2﹣x)= x,

∴DN= DP= x,

∴GH=2GN=2× x=x,

當(dāng)x= 時,AE= ,

∴BE=AB﹣AE= ,

∵△BEF是等邊三角形,

∴EF=BE= ,BP= ,

∴DP= ,

∴GH=DG= ,

∴EF+GH=2=AC,所以②錯誤;

當(dāng)0<x<2時,

∵AE=x,

∴BE=2﹣x,

∴EF=2﹣x,

∴BP= (2﹣x),

∴DP= x,

∴GH=2× =x=DG=DH,

∴六邊形AEFCHG面積=S菱形ABCD﹣SBEEF﹣SDGH

= ×2×2 (2﹣x)2 x2

=2 (x﹣1)2

=﹣ (x﹣1)2+ ,

∴當(dāng)x=1時,六邊形AEFCHG面積最大為 ,所以③錯誤,

六邊形AEFCHG周長=AE+EF+FC+CH+HG+AG

=x+2﹣x+x+2﹣x+x+2﹣x=6是定值,

所以④正確,即:正確的有①④,

所以答案是①④.

【考點精析】關(guān)于本題考查的二次函數(shù)的最值和菱形的性質(zhì),需要了解如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角尺疊放如圖 1 所示,現(xiàn)將 45°的三角尺ADE 固定不動,將含 30°的三角尺 ABC 繞頂點 A 順時針轉(zhuǎn)動(旋轉(zhuǎn)角不超過 180 度),使兩塊三角尺至少有一組邊互相平行.如圖 2:當(dāng)∠BAD=15°時,BCDE.則∠BAD(0°<BAD<180°)其它所有可能符合條件的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形邊長為1的方格紙內(nèi)將△ABC經(jīng)過一次平移后得到ABC,圖中標(biāo)出了點B的對應(yīng)點B.根據(jù)下列條件,利用格點和三角尺畫圖:

1)補(bǔ)全A′B′C;

2)請在AC邊上找一點D,使得線段BD平分△ABC的面積,在圖上作出線段BD

3)利用格點在圖中畫出AC邊上的高線BE;

4)求ABD的面積_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M(m,n)在反比例函數(shù)y=﹣ 上,其中m是分式方程 ﹣1= 的根,將M點先向上平移4個單位,再向左平移1個單位,得到點N.若點M,N都在直線y=kx+b上,直線解析式為( )
A.y=﹣ x﹣
B.y= x+
C.y=4x﹣5
D.y=﹣4x+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地開往B地,全程800km;所行的路程與時間的函數(shù)圖像如圖所示,下列問題:①乙車比甲車早出發(fā)2h;②甲車追上乙車時行駛了300km;③乙車的速度小于甲車速度;④甲車跑完全程比乙車跑完全程少用3h;以上正確的序號是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題 1、如圖1,線段AB的端點在正方形網(wǎng)格的格點上,在圖1中找到格點C,使組成的△ABC的一個內(nèi)角α滿足tanα=2(找到兩個點C,全等的三角形算一種)
2、
(1)如圖1,線段AB的端點在正方形網(wǎng)格的格點上,在圖1中找到格點C,使組成的△ABC的一個內(nèi)角α滿足tanα=2(找到兩個點C,全等的三角形算一種).

(2)如圖2,在Rt△DEF中,∠DEF=90°,DE=1,sin∠F= .用兩塊全等的△DEF拼出一個平行四邊形,將拼得的平行四邊形畫在圖2網(wǎng)格(網(wǎng)格圖中小正方形邊長均為1)中,畫出不同的兩種平行四邊形(全等的算一種),并寫出相應(yīng)的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(或方程組)解應(yīng)用題:

(1)某服裝店到廠家選購甲、乙兩種服裝,若購進(jìn)甲種服裝9件、乙種服裝10件,需1810元;購進(jìn)甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價格相差多少元?

(2)某工廠現(xiàn)庫存某種原料1200噸,用來生產(chǎn)A、B兩種產(chǎn)品,每生產(chǎn)1噸A產(chǎn)品需這種原料2噸、生產(chǎn)費用1000元;每生產(chǎn)1噸B產(chǎn)品需這種原料2.5噸、生產(chǎn)費用900元,如果用來生產(chǎn)這兩種產(chǎn)品的資金為53萬元,那么A、B兩種產(chǎn)品各生產(chǎn)多少噸才能使庫存原料和資金恰好用完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識,可以導(dǎo)出下面這個形式優(yōu)美的等式:a2+b2+c2abbcac=[(ab)2+(bc)2+(ac)2],該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔、美觀.

1)請你檢驗說明這個等式的正確性.

2)若a=2019b=2020,c=2021,你能很快求出a2+b2+c2abbcac的值嗎?

3)若ab=,bc=,且a2+b2+c2=1,求ab+bc+ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)

1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+B=∠C+D

(簡單應(yīng)用)

2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC28°,∠ADC20°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)

(問題探究)

3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A30°,∠C18°,則∠P的度數(shù)為   

(拓展延伸)

4)在圖4中,若設(shè)∠Cx,∠By,∠CAPCAB,∠CDPCDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為   (用x、y表示∠P

5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關(guān)系,直接寫出結(jié)論   

查看答案和解析>>

同步練習(xí)冊答案