【題目】設(shè)M(m,n)在反比例函數(shù)y=﹣ 上,其中m是分式方程 ﹣1= 的根,將M點(diǎn)先向上平移4個(gè)單位,再向左平移1個(gè)單位,得到點(diǎn)N.若點(diǎn)M,N都在直線y=kx+b上,直線解析式為( )
A.y=﹣ x﹣
B.y= x+
C.y=4x﹣5
D.y=﹣4x+5

【答案】D
【解析】解:解分式方程 ﹣1= 得,x=2,

∵m是分式方程 ﹣1= 的根,

∴m=2,

∵M(jìn)(m,n)在反比例函數(shù)y=﹣ 上,

∴n=﹣3,

∴M(2,﹣3),

∵將M點(diǎn)先向上平移4個(gè)單位,再向左平移1個(gè)單位,得到點(diǎn)N,

∴N(1,1),

∵點(diǎn)M,N都在直線y=kx+b上,

,

解得 ,

∴直線解析式為:y=﹣4x+5,

所以答案是:D.

【考點(diǎn)精析】本題主要考查了去分母法和確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí)點(diǎn),需要掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊;確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,ABAC,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)F,且FAE的中點(diǎn).

(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC4,AB5,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)AB分別是x軸正半軸與y軸正半軸上一點(diǎn),OAm,OBn,以AB為邊在第一象限內(nèi)作正方形ABCD

1)若m4n3,直接寫(xiě)出點(diǎn)C與點(diǎn)D的坐標(biāo);

2)點(diǎn)C在直線ykxk1k為常數(shù))上運(yùn)動(dòng).

如圖1,若k2,求直線OD的解析式;

如圖2,連接AC、BD交于點(diǎn)E,連接OE,若OE2OA,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使AB=AC,連結(jié)AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.

(1)求證:DC=BD;
(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】智能折疊電動(dòng)車(chē)是在傳統(tǒng)電動(dòng)車(chē)的基礎(chǔ)上,根據(jù)消費(fèi)者需求生產(chǎn)的一種新型電動(dòng)車(chē).某智能折疊電動(dòng)車(chē)公司計(jì)劃每周生產(chǎn)1400輛,平均每天生產(chǎn)200輛.由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃每天生產(chǎn)量相比有出入.下表是某周智能折疊電動(dòng)車(chē)生產(chǎn)情況(超計(jì)劃生產(chǎn)量為正、不足計(jì)劃生產(chǎn)量為負(fù),單位:輛)

星期

生產(chǎn)情況

(1)根據(jù)記錄可知前三天共生產(chǎn)智能折疊電動(dòng)車(chē)_______輛;

(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;

(3)若該公司實(shí)行按生產(chǎn)的智能折疊電動(dòng)車(chē)數(shù)量的多少計(jì)工資,即計(jì)件工資制.如果每生產(chǎn)一輛智能折疊電動(dòng)車(chē)可得人民幣60元,那么該公司工人這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點(diǎn)A在第一象限,延長(zhǎng)AB交y軸負(fù)半軸于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使AE=AC,雙曲線y= (x>0)的圖象過(guò)點(diǎn)E.若△BCD的面積為2 ,則k的值為( )

A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長(zhǎng)為2,∠ABC=60°,翻折∠B,∠D,使點(diǎn)B,D兩點(diǎn)重合于對(duì)角線BD上一點(diǎn)P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是菱形ABCD的中心;
②當(dāng)x= 時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是 ;
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長(zhǎng)的值不變.
其中正確結(jié)論是 . (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y=﹣ x2+bx+c的對(duì)稱(chēng)軸是x=2,且經(jīng)過(guò)點(diǎn)(6,0).

(1)求拋物線C1的解析式;
(2)將拋物線C1向下平移2個(gè)單位后得到拋物線C2 , 如圖,直線y=kx﹣2k+1交拋物線C2于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交拋物線C2的對(duì)稱(chēng)軸于點(diǎn)C,M(xA , 3),xA表示點(diǎn)A橫坐標(biāo),求證:AC=AM;
(3)在(2)的條件下,請(qǐng)你參考(2)中的結(jié)論解決下列問(wèn)題:
①若CM=AM,求 的值;
②請(qǐng)你探究:在拋物線C2上是否存在點(diǎn)P,使得PO+PC取得最小值?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程組:

1

(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案