【題目】已知如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn),點(diǎn)

1)求的值;

2)求的面積;

3)直接寫出時(shí)的取值范圍.

【答案】1m=-4,n=4;(2;(3的取值范圍是x-40x1

【解析】

1)將A,B兩點(diǎn)分別代入一次函數(shù)解析式,即可求出兩點(diǎn)坐標(biāo).

2)將△AOB分割為SAOB=SBOC+SAOC,列式求出即可.

3)根據(jù)函數(shù)的圖像和交點(diǎn)坐標(biāo)即可求得.

1)把A點(diǎn)坐標(biāo)(1,n)代入y2=x+3,得n=4;

B點(diǎn)坐標(biāo)(m,-1)代入y2=x+3,得m=-4

m=-4,n=4

2)如圖,當(dāng)y=0時(shí),x3=0,

C-3,0),

SAOB=SBOC+SAOC=×3×1+×3×4=

3)當(dāng)時(shí)的取值范圍是x-40x1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并解決相應(yīng)問題:

材料一:換元法是數(shù)學(xué)中的重要方法,利用換元法可以從形式上簡化式子,在求解某些特殊方程時(shí),利用換元法常?梢赃_(dá)到轉(zhuǎn)化的目的,例如在求解一元四次方程,就可以令,則原方程就被換元成,解得 t 1,即,從而得到原方程的解是 x 1

材料二:楊輝三角形是中國數(shù)學(xué)上一個(gè)偉大成就,在中國南宋數(shù)學(xué)家楊輝 1261 年所著的《詳解九章算法》一書中出現(xiàn),它呈現(xiàn)了某些特定系數(shù)在三角形中的一種有規(guī)律的幾何排列,下圖為楊輝三角形:

……………………………………

1)利用換元法解方程:

2)在楊輝三角形中,按照自上而下、從左往右的順序觀察, an 表示第 n 行第 2 個(gè)數(shù)(其中 n≥4),bn 表示第 n 行第 3 個(gè)數(shù),表示第行第 3 個(gè)數(shù),請用換元法因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠ABC=90°,ABBC,E、M分別為AB、AC上的點(diǎn),連接CE,BM交于點(diǎn)G,且BMCE,OAC的中點(diǎn),連接BOCE于點(diǎn)N

(1)如圖,若AB=6,2MOAM,求BM的長;

(2)如圖,連接OG、AG,若AGOG,求證:ACBG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2的圖象交于 A(﹣1,a),B 兩點(diǎn).

(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若POB 的面積為 1,請直接寫出點(diǎn) P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫出ABC關(guān)于點(diǎn)C成中心對稱的A1B1C;平移ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫出平移后對應(yīng)的A2B2C2;

(2)A1B1C和A2B2C2關(guān)于某一點(diǎn)成中心對稱,則對稱中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在倡導(dǎo)“社會主義核心價(jià)值觀”演講比賽中,某校根據(jù)初賽成績在七、八年級分別選出10名同學(xué)參加決賽,對這些同學(xué)的決賽成績進(jìn)行整理分析,繪制成如下團(tuán)體成績統(tǒng)計(jì)表和選手成績折線統(tǒng)計(jì)圖:

七年級

八年級

平均數(shù)

85.7

_______

眾數(shù)

_______

_______

方差

37.4

27.8

根據(jù)上述圖表提供的信息,解答下列問題:

1)請你把上面的表格填寫完整;

2)考慮平均數(shù)與方差,你認(rèn)為哪個(gè)年級的團(tuán)體成績更好?

3)假設(shè)在每個(gè)年級的決賽選手中分別選出2個(gè)參加決賽,你認(rèn)為哪個(gè)年級的實(shí)力更強(qiáng)一些?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長線上,∠CAD=45°.

(1)若AB=4,求弧CD的長.

(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,CBD=30°,則DF的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店如果將進(jìn)貨價(jià)為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價(jià),減少進(jìn)貨量的方法增加利潤,已知這種商品每漲價(jià)0.5元,其銷量就減少10件.

1)要使每天獲得利潤700元,請你幫忙確定售價(jià);

2)問售價(jià)定在多少時(shí)能使每天獲得的利潤最多?并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案