如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C作⊙O的切線CM.
(1)求證:∠ACM=∠ABC;
(2)延長BC到D,使BC = CD,連接AD與CM交于點(diǎn)E,若⊙O的半徑為3,ED = 2, 求∆ACE的外接圓的半徑.
證明:(1)連接OC
∵ AB為⊙O的直徑
∴ ∠ACB = 90°
∴ ∠ABC +∠BAC = 90°[來源:]
又∵ CM是⊙O的切線
∴ OC⊥CM
∴ ∠ACM +∠ACO = 90°
∵ CO = AO
∴ ∠BAC =∠ACO
∴ ∠ACM =∠ABC
(2)∵ BC = CD
∴ OC∥AD
又∵ OC⊥CE
∴ AD⊥CE
∴ ΔAEC是直角三角形
∴ ΔAEC的外接圓的直徑為AC
又∵ ∠ABC +∠BAC = 90°
∠ACM +∠ECD = 90°
而∠ABC =∠ACM
∴ ∠BAC =∠ECD
又∠CED =∠ACB = 90°
∴ ΔABC∽ΔCDE
∴ =
而⊙O的半徑為3
∴ AB = 6
∴ =
∴ BC2 = 12
∴ BC = 2在RtΔABC中
∴ AC = = 2
∴ ΔAEC的外接圓的半徑為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于兩點(diǎn),點(diǎn)的橫坐標(biāo)為2.
(1)求的值和點(diǎn)的坐標(biāo);
(2)判斷點(diǎn)的象限,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖2,把⊿ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)35°,得到⊿A’B’C,A’B’交AC于點(diǎn)D,若∠A’DC=90°,則∠A=
。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
今年我市有4萬名學(xué)生參加中考,為了了解這些考生的數(shù)學(xué)成績,從中抽取2000名考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析.在這個(gè)問題中,下列說法:
①這4萬名考生的數(shù)學(xué)中考成績的全體是總體;②每個(gè)考生是個(gè)體;③2000名考生是總體的一個(gè)樣本;④樣本容量是2000.
其中說法正確的有( 。
A.4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將兩個(gè)斜邊長相等的三角形紙片如圖①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1,如圖②,連接D1B,則∠E1D1B的度數(shù)為( 。
A.10° B. 20° C. 7.5° D. 15°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com