【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點,與y軸的正半軸交于點C,其頂點為D.
(1)寫出C,D兩點的坐標(用含a的式子表示);
(2)設S△BCD:S△ABD=k,求k的值;
(3)當△BCD是直角三角形時,求對應拋物線的解析式.
【答案】
(1)
解:在y=a(x﹣1)(x﹣3),令x=0可得y=3a,
∴C(0,3a),
∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,
∴D(2,﹣a);
(2)
解:在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,
∴A(1,0),B(3,0),
∴AB=3﹣1=2,
∴S△ABD= ×2×a=a,
如圖,設直線CD交x軸于點E,設直線CD解析式為y=kx+b,
把C、D的坐標代入可得 ,解得 ,
∴直線CD解析式為y=﹣2ax+3a,令y=0可解得x= ,
∴E( ,0),
∴BE=3﹣ =
∴S△BCD=S△BEC+S△BED= × ×(3a+a)=3a,
∴S△BCD:S△ABD=(3a):a=3,
∴k=3;
(3)
解:∵B(3,0),C(0,3a),D(2,﹣a),
∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,
∵∠BCD<∠BCO<90°,
∴△BCD為直角三角形時,只能有∠CBD=90°或∠CDB=90°兩種情況,
①當∠CBD=90°時,則有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此時拋物線解析式為y=x2﹣4x+3;
②當∠CDB=90°時,則有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣ (舍去)或a= ,此時拋物線解析式為y= x2﹣2 x+ ;
綜上可知當△BCD是直角三角形時,拋物線的解析式為y=x2﹣4x+3或y= x2﹣2 x+ .
【解析】(1)令x=0可求得C點坐標,化為頂點式可求得D點坐標;(2)令y=0可求得A、B的坐標,結合D點坐標可求得△ABD的面積,設直線CD交x軸于點E,由C、D坐標,利用待定系數法可求得直線CD的解析式,則可求得E點坐標,從而可表示出△BCD的面積,可求得k的值;(3)由B、C、D的坐標,可表示出BC2、BD2和CD2 , 分∠CBD=90°和∠CDB=90°兩種情況,分別利用勾股定理可得到關于a的方程,可求得a的值,則可求得拋物線的解析式.
【考點精析】解答此題的關鍵在于理解二次函數的圖象的相關知識,掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數學 來源: 題型:
【題目】如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y= (x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C,D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E,F(xiàn),則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當PD∥AB時,求PD的長;
(2)如圖3,當 = 時,延長AB至點E,使BE= AB,連接DE. ①求證:DE是⊙O的切線;
②求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P在等邊△ABC的內部,且PC=6,PA=8,PB=10,將線段PC繞點C順時針旋轉60°得到P'C,連接AP',則sin∠PAP'的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與反比例函數y= 的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數y=bx+ac的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解
我們知道,1+2+3+…+n= ,那么12+22+32+…+n2結果等于多少呢?
在圖1所示三角形數陣中,第1行圓圈中的數為1,即12 , 第2行兩個圓圈中數的和為2+2,即22 , …;第n行n個圓圈中數的和為 ,即n2 , 這樣,該三角形數陣中共有 個圓圈,所有圓圈中數的和為12+22+32+…+n2 .
(1)將三角形數陣經兩次旋轉可得如圖2所示的三角形數陣,觀察這三個三角形數陣各行同一位置圓圈中的數(如第n﹣1行的第一個圓圈中的數分別為n﹣1,2,n),發(fā)現(xiàn)每個位置上三個圓圈中數的和均為 , 由此可得,這三個三角形數陣所有圓圈中數的總和為3(12+22+32+…+n2)= , 因此,12+22+32+…+n2= .
(2)根據以上發(fā)現(xiàn),計算: 的結果為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調查,繪制出頻數分布表和頻數分布直方圖的一部分. 請根據圖表信息回答下列問題:
視力 | 頻數(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調查的樣本為 , 樣本容量為;
(2)在頻數分布表中,a= , b= , 并將頻數分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com