【題目】作圖題:

1)如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,按要求作圖.

①利用網(wǎng)格線在直線l上求作一點Q,使得QA+QB的和最短,請在直線l上標出點Q位置,QA+QB的和最短距離為 _ 個單位。

②在網(wǎng)格中,找一格點E,使EBCABC全等(不重合),這樣的格點有 _ _ 個.

2)尺規(guī)作圖:如圖ABC,求作P使得點PAB、BC邊的距離相等,且同時到A、C兩點的距離相等,保留作圖痕跡。

【答案】1)①見解析,;②3;(2)見解析.

【解析】

1)①作點B關于l的對稱點B’,連接AB’l于點Q,則點Q即為所求,而QA+QB的最短距離就是AB’的長,利用勾股定理進行計算即可;②根據(jù)全等三角形的判定找出所有符合題意的點E即可;

2)作∠ABC的角平分線與線段AC的垂直平分線,它們的交點就是所求的點P.

解:(1)①如圖所示:點Q即為所求,

QA+QB的最短距離=AB’個單位;

②如圖所示,△E1CB,△E2CB,△E3BC與△ABC全等,

故這樣的格點有3個;

2)如圖所示:點P即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地是一個降水豐富的地區(qū),今年4月初,由于連續(xù)降雨導致該地某水庫水位持續(xù)上漲,經(jīng)觀測水庫1日—4日的水位變化情況,發(fā)現(xiàn)有這樣規(guī)律, 1日,水庫水位為米,此后日期每增加一天,水庫水位就上漲米。

(1)請求出該水庫水位(米)與日期(日)之間的函數(shù)表達式;(注:4月1日,即,4月2日,即,…,以次類推)

(2)請用求出的函數(shù)表達式預測該水庫今年4月6日的水位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ΔABC中,DE、MN是邊AB、AC的垂直平分線,其垂足分別為點D、M,分別交BC于點E、N,DEMN交于點F.

(1)若∠B=24°,求∠BAE的度數(shù).

(2)AB=8,AC=11,思考ΔAEN的周長肯定小于多少?

(3)若∠EAN=40°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程x22m+3x+m2+3m+2=0

(1)已知x=2是方程的一個根,求m的值;

(2)以這個方程的兩個實數(shù)根作為△ABCAB、ACABAC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線EFBC于點E,交AB于點F,D為線段CE的中點,BE=AC.

(1)求證:AD⊥BC.

(2)若∠BAC=75°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,.

(1)求證:OA=OB;

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求完成作圖:

(1)作出△ABC關于x軸對稱的圖形;

(2)寫出A、B、C的對應點A′、B′C′的坐標;

(3)x軸上畫出點Q,使△QAC的周長最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程x22m+3x+m2+3m+2=0

(1)已知x=2是方程的一個根,求m的值;

(2)以這個方程的兩個實數(shù)根作為△ABCAB、ACABAC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直線上擺放著三個正方形

(1)如圖1,已知水平放置的兩個正方形的邊長依次是,斜著放置的正方形的面積_ ;兩個直角三角形的面積之和為____ (均用表示)

(2)如圖2,小正方形面積, 斜著放置的正方形的面積,求圖中兩個鈍角三角形的面積_ ;_

(3)3是由五個正方形所搭成的平面圖,分別表示所在地三角形與正方形的面積,試寫出_ ;_ .(均用表示)

查看答案和解析>>

同步練習冊答案