【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點,C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點E,將△EOC沿EC折疊,使點O落在AB邊上的D點,求E點的坐標(biāo);
(Ⅱ)如圖②,在OA、OC邊上選取適當(dāng)?shù)狞cE′、F,將△E′OF沿E′F折疊,使O點落在AB邊上D′點,過D′作D′G∥OA交E′F于T點,交OC于G點,設(shè)T的坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫出結(jié)果即可)
【答案】解:(Ⅰ)∵將△EOC沿EC折疊,使O點落在AB邊上的D點,
∴DC=OC=10.
在Rt△BCD中,∵∠B=90°,BC=OA=6,DC=10,
∴BD= =8.
在Rt△AED中,∵∠DAE=90°,AD=2,DE=OE,AE=6﹣OE,
∴DE2=AD2+AE2,即OE2=22+(6﹣OE)2,
解得 OE= ,
∴E點的坐標(biāo)為(0, );
(Ⅱ)∵將△E′OF沿E′F折疊,使O點落在AB邊上D′點,
∴∠D′E′F=∠OE′F,D′E′=OE′,
∵D′G∥AO,
∴∠OE′F=∠D′TE′,
∴∠D′E′F=∠D′TE′,
∴D′T=D′E′=OE′,
∴TG=AE′;
∵T(x,y),
∴AD′=x,TG=AE′=y,D′T=D′E′=OE′=6﹣y.
在Rt△AD′E′中,∵∠D′AE′=90°,
∴AD′2+AE′2=D′E′2,即x2+y2=(6﹣y)2,
整理,得y=﹣ x2+3;
由(1)可得AD′=OG=2時,x最小,從而x≥2,
當(dāng)E′F恰好平分∠OAB時,AD′最大即x最大,
此時G點與F點重合,四邊形AOFD′為正方形,即x最大為6,從而x≤6,
故變量x的取值范圍是2≤x≤6.
(Ⅲ)∵T的坐標(biāo)為(x,y),y=﹣ x2+3,OG=2 ,
∴GT=y=﹣ ×12+3=2,AD'=OG=2 ,
∴DT=6﹣2=4,
作FM⊥AB于M,則FM=BC=6,∠FMD'=90°=∠A,
∴∠1+∠2=90°,
由折疊的性質(zhì)得:∠ED'F=∠AOC=90°,
∴∠1+∠3=90°,
∴∠2=∠3,
∴△D'MF∽△EAD',
∴ = ,即 = = ,
設(shè)E'O=ED'=x,則AE'=6﹣x,
在Rt△AD'E'中,由勾股定理得:(2 )2+(6﹣x)2=x2,
解得:x=4,
∴OF=D'F=4 ,
∴GF=OF﹣OG=2 ,
∴△D′TF的面積= D'TGF= ×4×2 =4 .
【解析】(1)利用折疊性質(zhì)和勾股定理,構(gòu)建方程,即可求出E坐標(biāo);(2)利用折疊的性質(zhì)、勾股定理構(gòu)建方程,變形為函數(shù)解析式形式即可;(3)由折疊可得相似三角形,對應(yīng)邊成比例可求出E'O,進一步求出面積.
【考點精析】根據(jù)題目的已知條件,利用翻折變換(折疊問題)和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,每個小正方形的邊長為1個單位,每個小正方形的頂點叫格點.
(1)將△ABC向左平移4格,再向下平移1格,請在圖中畫出平移后的△A'B'C';
(2)利用網(wǎng)格線在圖中畫出△ABC的中線CD,高線AE;
(3)△A'B'C'的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B分別在函數(shù)y=(k1>0)與函數(shù)y=(k2<0)的圖象上,線段AB的中點M在x軸上,△AOB的面積為4,則k1﹣k2的值為( 。
A.2B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)中x與y的部分對應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減。
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
上述結(jié)論中正確的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數(shù);
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過點o作射線OG、ON分別交AB,BC于點E,F(xiàn),且∠EOF=90°,BO、EF交于點P.則下列結(jié)論中:
⑴圖形中全等的三角形只有兩對;
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結(jié)論有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如兩個全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉(zhuǎn),線段DE,EF分別交線段CA,CB(或它們所在的直線)于M、N.
(1)如圖1,當(dāng)線段EF經(jīng)過△ABC的頂點時,點N與點C重合,線段DE交AC于M,已知AC=BC=5,則MC= ;
(2)如果2,當(dāng)線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請?zhí)骄?/span>AM,MN,CN之間的等量關(guān)系,并說明理由;
(3)如圖3,當(dāng)線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,則(2)中AM,MN,CN之間的等量關(guān)系還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點為“格點”,以格點為頂點的三角形叫做“格點三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點三角形A′B′C′是由格點三角形ABC通過怎樣的變換得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-3,4),請求出三角形DEF的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com