【題目】如圖,點(diǎn)AB分別在函數(shù)yk10)與函數(shù)yk20)的圖象上,線段AB的中點(diǎn)Mx軸上,△AOB的面積為4,則k1k2的值為(  )

A.2B.4C.6D.8

【答案】D

【解析】

過點(diǎn)AACy軸交于C,過點(diǎn)BBDy軸交于D,然后根據(jù)平行與中點(diǎn)得出OCOD,設(shè)點(diǎn)Aa,d),點(diǎn)Bb,﹣d),代入到反比例函數(shù)中有k1ad,k2=﹣bd,然后利用△AOB的面積為4得出ad+bd8,即可求出k1k2的值.

過點(diǎn)AACy軸交于C,過點(diǎn)BBDy軸交于D

ACBDx

MAB的中點(diǎn)

OCOD

設(shè)點(diǎn)Aad),點(diǎn)Bb,﹣d

代入得:k1ad,k2=﹣bd

SAOB4

整理得ad+bd8

k1k28

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖①,在正方形ABCD中,對(duì)角線AC=8,則正方形ABCD的面積為   ;

問題探究

(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=DCB=90°,∠ADC+ABC=180°,若四邊形ABCD的面積為8,求對(duì)角線AC的長;

問題解決

(3)如圖③,四邊形ABCD是張叔叔要準(zhǔn)備開發(fā)的菜地示意圖,其中邊ADAB是準(zhǔn)備用磚來砌的磚墻,且滿足AD=AB,∠DAB=90°,邊DCCB是準(zhǔn)備用現(xiàn)有的長度分別為3米和7米的竹籬笆來圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對(duì)角線AC的長是否存在最大值呢?若存在,求出這個(gè)最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的平分線,點(diǎn)是射線上一點(diǎn),點(diǎn)CD分別在射線、上,連接PCPD

1)發(fā)現(xiàn)問題

如圖①,當(dāng),時(shí),則PCPD的數(shù)量關(guān)系是________

2)探究問題

如圖,點(diǎn)C、D在射線OA、OB上滑動(dòng),且∠AOB=90°,OCPODP=180°,當(dāng)時(shí),PCPD在(1)中的數(shù)量關(guān)系還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)的墻上時(shí),梯子的頂端在B點(diǎn),當(dāng)它靠在另一側(cè)的墻上時(shí),梯子的頂端在D點(diǎn),已知∠BAC60°,點(diǎn)B到地面的垂直距離BC5米,DE6米.

1)求梯子的長度;

2)求兩面墻之間的距離CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在山頂上建了一座5G信號(hào)通信塔AB,山高BE100米(A,B,E在同一直線上),點(diǎn)C與點(diǎn)D分別在E的兩側(cè)(CE,D在同一直線上),BECD,CD之間的距離1000米,點(diǎn)D處測得通信塔頂A的仰角是30°,點(diǎn)C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨(shù)據(jù):

A.350B.250C.200D.150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:

體積(立方米/件)

質(zhì)量(噸/件)

型商品

08

05

型商品

2

1

1)已知一批商品有兩種型號(hào),體積一共是20立方米,質(zhì)量一共是105噸,求、兩種型號(hào)商品各有幾件?

2)物資公司現(xiàn)有可供使用的貨車每輛額定載重35噸,容積為6立方米,其收費(fèi)方式有以下兩種:

車收費(fèi):每輛車運(yùn)輸貨物到目的地收費(fèi)600元;

②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.

現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡兀绻麅煞N收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置.此時(shí)AC′的中點(diǎn)恰好與點(diǎn)D重合,AB′交CD于點(diǎn)E,若AB=3,則△AEC的面積為( )

A.3
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使點(diǎn)O落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(Ⅱ)如圖②,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上D′點(diǎn),過D′作D′G∥OA交E′F于T點(diǎn),交OC于G點(diǎn),設(shè)T的坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知射線CBOA,∠C=OAB,

(1)求證:ABOC;

(2)如圖2,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF.

①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).

②若平行移動(dòng)AB,那么∠OBC :OFC的值是否隨之發(fā)生變化?若變化,找出變

化規(guī)律;若不變,求出這個(gè)比值.

查看答案和解析>>

同步練習(xí)冊(cè)答案