【題目】如圖,在四邊形ABCD,ABAD,C90°,以AB為直徑的⊙OAD于點(diǎn)E,CDED,連接BDO于點(diǎn)F

1求證:BCO相切;

2BD10,AB13,求AE的長(zhǎng).

【答案】1見(jiàn)解析;(2)

【解析】分析:(1)連接BE,可證明Rt△BCD≌Rt△BED,結(jié)合條件可證明∠BDC=∠ABD,可證得AB∥CD,最后看單詞結(jié)果;(2)連接EF,根據(jù)圓周角定理得出∠AFB=90°,在Rt△ABF中根據(jù)勾股定理得出BF=5,然后由Rt△ABF∽R(shí)t△BDC,ED= ,從而求出AE的長(zhǎng).

詳解1)證明:連接BE

AB是直徑,

∴∠AEB90°

RtBCDRtBED

RtBCDRtBED

∴∠ADBBDC

ADAB,

∴∠ADBABD

∴∠BDCABD

ABCD

∴∠ABC+∠C180°

∴∠ABC180°C180°―90°90°

BCAB

B在⊙O上,

BD與⊙O相切

2解:連接AF

AB是直徑,

∴∠AFB90°,即AFBD

ADABBC10,

BF5

RtABFRtBDC

RtABFRtBDC

DC

ED

AEADED13―

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中:

①在RtABC中,∠C=90°,CDAB邊上的中線,若CD=2,則AB=4;

②八邊形的內(nèi)角和度數(shù)為1080°;

2、3、4、3這組數(shù)據(jù)的方差為0.5;

④分式方程=的解為x=;

⑤已知菱形的一個(gè)內(nèi)角為60°,一條對(duì)角線為2,則另一對(duì)角線為2

正確的序號(hào)有(

A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖直線相交于點(diǎn),

1)圖中與互余的角有 圖中與互補(bǔ)的角有 (備注:寫出所有符合條件的角)

2)根據(jù)下列條件,分別求的度數(shù):①射線平分;②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織九年級(jí)學(xué)生參加漢字聽(tīng)寫大賽,并隨機(jī)抽取部分學(xué)生成績(jī)作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a=______,b=_______

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)已知該年級(jí)有400名學(xué)生參加這次比賽,若成績(jī)?cè)?/span>90分以上(含90分)的為優(yōu),估計(jì)該年級(jí)成績(jī)?yōu)閮?yōu)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BCAB的夾角分別為45°68°,若點(diǎn)C到地面的距離CD28cm,坐墊中軸E處與點(diǎn)B的距離BE4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知、,在軸上有一動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),則點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象,它們交于點(diǎn)A(4,3),一次函數(shù)的圖象與y軸交于點(diǎn)B,且OA=OB.

(1)求這兩個(gè)函數(shù)的解析式;

(2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小燁在探究數(shù)軸上兩點(diǎn)間距離時(shí)發(fā)現(xiàn):若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的橫坐標(biāo)分別為,則兩點(diǎn)間距離為;兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的縱坐標(biāo)分別為,則兩點(diǎn)間距離為.據(jù)此,小燁猜想:對(duì)于平面內(nèi)任意兩點(diǎn),兩點(diǎn)間的距離為.

(1)請(qǐng)你利用下圖,試證明:

(2)若,試在軸上求一點(diǎn),使的距離最短,并求出的最小值和點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】母親節(jié)期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐助給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量 (單位:個(gè))與銷售單價(jià) (單位:元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:

(1) 之間的函數(shù)關(guān)系是

(2)若許愿瓶的進(jìn)價(jià)為6/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn) (單位:元)與銷售單價(jià) (單位:元/個(gè))之間的函數(shù)關(guān)系式;

(3)若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案