【題目】甲、乙兩家超市進(jìn)行促銷活動(dòng),甲超市采用“買100減50”的促銷方式,即購買商品的總金額滿100元但不足200元,少付50元;滿200元但不足300元,少付100元;….乙超市采用“打6折”的促銷方式,即顧客購買商品的總金額打6折.
(1)若顧客在甲商場購買商品的總金額為x(100≤x<200)元,優(yōu)惠后得到商家的優(yōu)惠率為p(p= ),寫出p與x之間的函數(shù)關(guān)系式,并說明p隨x的變化情況;
(2)王強(qiáng)同學(xué)認(rèn)為:如果顧客購買商品的總金額超過100元,實(shí)際上甲超市采用“打5折”、乙超市采用“打6折”,那么當(dāng)然選擇甲超市購物.請你舉例反駁;
(3)品牌、質(zhì)量、規(guī)格等都相同的某種商品,在甲乙兩商場的標(biāo)價(jià)都是x(300≤x<400)元,認(rèn)為選擇哪家商場購買商品花錢較少?請說明理由.

【答案】
(1)解:∵購買商品的總金額滿100元但不足200元,少付50元;

∴優(yōu)惠金額為50元,

∴P= (100≤x<200),p隨x的增大而減小


(2)解:在100≤x<200的范圍內(nèi),取x>125的值時(shí),都是選乙超市花錢較少,

如:當(dāng)x=130時(shí),在甲超市花130﹣50=80(元);

在乙超市花130×0.6=78(元),

注:在其它范圍也可,說甲不是“打5折”也可


(3)解:當(dāng)300≤x<400時(shí)在甲超市購買商品應(yīng)付款y1=x﹣150,

在乙超市購買商品應(yīng)付款y2=0.6x.

分三種情況:

①x﹣150=0.6x時(shí),即x=375,在兩家商場購買商品花錢一樣;

②當(dāng)x﹣150>0.6x時(shí),即375<x<400,在乙商場購買商品花錢較少;

③當(dāng)x﹣150<0.6x時(shí),即300≤x<375,在甲商場購買商品花錢較少


【解析】(1)根據(jù)商家的優(yōu)惠率即可列出p與x之間的函數(shù)關(guān)系式,并能得出p隨x的變化情況;(2)在100≤x<200的范圍內(nèi),取x>125的值時(shí),都是選乙超市花錢較少,如:當(dāng)x=130時(shí),在甲超市花130﹣50=80(元);在乙超市花130×0.6=78(元),即可解答;(3)當(dāng)300≤x<400時(shí)在甲超市購買商品應(yīng)付款y1=x﹣150,在乙超市購買商品應(yīng)付款y2=0.6x;分三種情況討論:①x﹣150=0.6x時(shí);②當(dāng)x﹣150>0.6x時(shí);③當(dāng)x﹣150<0.6x時(shí),即可解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點(diǎn),交x軸于點(diǎn)C.

(1)m、n的值;

(2)請直接寫出不等式kx+b<的解集;

(3)x軸下方的圖像沿x軸翻折,點(diǎn)B落在點(diǎn)B′處,連接AB′、B′C,求△A B′C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB在線段EF上,點(diǎn)MN分別是線段EA、BF的中點(diǎn),EAABBF=1:2:3,若MN=8cm,則線段EF的長是(  )

A. 10 cm B. 11 cm C. 12 cm D. 13 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)O為直線AB上一點(diǎn),將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.

(1)如圖1,將三角板的一邊ON與射線OB重合,過點(diǎn)O在三角板的內(nèi)部,作射線OC,使∠NOC:∠MOC=2:1,求∠AOC的度數(shù);

(2)如圖2,將三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度到圖2的位置,過點(diǎn)O在三角板MON的內(nèi)部作射線OC,使得OC恰好是∠MOB對的角平分線,此時(shí)∠AOM∠NOC滿足怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,點(diǎn)E在AB上且AE:EB=1:2,點(diǎn)F是BC中點(diǎn),過D作DP⊥AF于點(diǎn)P,DQ⊥CE于點(diǎn)Q,則DP:DQ=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)為( ,0)、(3 ,0)、(0,5),點(diǎn)D在第一象限,且∠ADB=60°,則線段CD的長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)寫出數(shù)軸上A、B兩點(diǎn)表示的數(shù);

2)動(dòng)點(diǎn)PQ分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒,t為何值時(shí),原點(diǎn)O、與PQ三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)O作OD⊥AC于點(diǎn)D,下列四個(gè)結(jié)論:

①EF=BE+CF;

②∠BOC=90°+∠A;

③點(diǎn)O到△ABC各邊的距離相等;

④設(shè)OD=m,AE+AF=n,則S△AEF=mn.

其中正確的結(jié)論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

同步練習(xí)冊答案