【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計(jì),某市限購前某季度二手房和新樓盤成交量為9500套;限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55%,新樓盤成交量比限購前減少52%.
(1)問限購后二手房和新樓盤各成交多少套?
(2)在成交量下跌的同時(shí),房?jī)r(jià)也大幅跳水.某樓盤限購前均價(jià)為12000元/m2,限購后,房?jī)r(jià)經(jīng)過二次下調(diào)后均價(jià)為9720元/m2,求平均每次下調(diào)的百分率.
【答案】(1)限購后二手房和新樓盤各成交2025套和2400套;(2)10%
【解析】
(1)設(shè)限購前二手房成交x套,新樓盤成交y套,列出二元一次方程組解答即可;
(2)設(shè)出平均每次下調(diào)的百分率,列出一元二次方程求解即可;
解:設(shè)限購前二手房成交x套,新樓盤成交y套,根據(jù)題意得:
解得
4500×(1-55%)=2025
4425-2025=2400
答:限購后二手房和新樓盤各成交2025套和2400套.
(2)設(shè)平均每次調(diào)價(jià)百分率為m,根據(jù)題意得:
12000×(1-m)2=9720
解得:m1=0.1=10%,m2=1.9(舍去)
答:(略)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O在矩形ABCD內(nèi),且與AB、BC邊都相切,E是BC上一點(diǎn),將△DCE沿DE對(duì)折,點(diǎn)C的對(duì)稱點(diǎn)F恰好落在⊙O上,已知AB=20,BC=25,CE=10,則⊙O的半徑為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CD、BD于E、F、O,連接DE、BF.
(1)求證:四邊形BEDF是菱形;
(2)若AB=8cm,BC=4cm,求四邊形DEBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半徑長為1,已知點(diǎn)P是△ABC邊上一動(dòng)點(diǎn)(可以與頂點(diǎn)重合)
(1)若點(diǎn)P到⊙C的切線長為,則AP的長度為 ;
(2)若點(diǎn)P到⊙C的切線長為m,求點(diǎn)P的位置有幾個(gè)?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣1和拋物線L:y=ax2+bx+c(a≠0),拋物線L的頂點(diǎn)為原點(diǎn),且經(jīng)過點(diǎn)A(2,),直線y=kx+1與y軸交于點(diǎn)F,與拋物線L交于點(diǎn)B(x1,y1),C(x2,y2),且x1<x2.
(1)求拋物線L的解析式;
(2)點(diǎn)P是拋物線L上一動(dòng)點(diǎn).
①以點(diǎn)P為圓心,PF為半徑作⊙P,試判斷⊙P與直線l的位置關(guān)系,并說明理由;
②若點(diǎn)Q(2,3),當(dāng)|PQ﹣PF|的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)求證:無論k為何值,直線l總是與以BC為直徑的圓相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)在一個(gè)不透明的紙箱里裝有紅、黃、藍(lán)三種顏色的小球,它們除顏色外完全相同,其中紅球有2個(gè),黃球有1個(gè),藍(lán)球有1個(gè).現(xiàn)有一張電影票,小明和小亮決定通過摸球游戲定輸贏(贏的一方得電影票).游戲規(guī)則是:兩人各摸1次球,先由小明從紙箱里隨機(jī)摸出1個(gè)球,記錄顏色后放回,將小球搖勻,再由小亮隨機(jī)摸出1個(gè)球并記錄顏色.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)你利用樹狀圖或列表法說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)菱形的邊長;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com