【題目】如圖,在等腰△ABC中,AB=BC,點D是AC邊的中點,延長BD至點E,使得DE=BD,連結(jié)CE.
(1)求證:△ABD≌△CED.
(2)當BC=5,CD=3時,求△BCE的周長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AH是圓O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若AD=8,EB=5,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,點在以為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).
(1)在圖1中作弦,使;
(2)在圖2中以為邊作一個45°的圓周角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(0,4)和(1,3),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應點A在直線y=x﹣1上,則點B與點O′之間的距離為( 。
A.3B.4C.3D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=3,點E是邊CD的中點,點P,Q分別是射線DC與射線EB上的動點,連結(jié)PQ,AP,BP,設DP=t,EQ=t.
(1)當點P在線段DE上(不包括端點)時.
①求證:AP=PQ;②當AP平分∠DPB時,求△PBQ的面積.
(2)在點P,Q的運動過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請求出t的值;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在緊張的中考復習之際,為確保學生的飲食健康與安全,部分家長組織成立中考護衛(wèi)小分隊,每天不辭辛勞從城區(qū)進購正規(guī)檢疫菜品。某甲、乙兩種菜品每份進價分別為 14 元、16 元,售價均為每份 18 元,這兩種菜品每天的進價總額為 1480 元,全部銷售完每天總利潤為 320 元.
(1)該甲、乙兩種菜品每天各賣出多少份?
(2)因受氣溫變化的影響,甲種菜品進價每份上漲 a 0 a 4元,為確保學生的營養(yǎng),在每天兩種菜品的進購總量不變的情況下,要求甲種菜品的數(shù)量不得低于 10 份,也不超過乙種菜品的 3 倍,則進購甲種菜品多少份才能使每天的總利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com