【題目】某網(wǎng)店正在熱銷一款電子產(chǎn)品,其成本為10/件,銷售中發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價x(元/件)之間存在如圖所示的關系:

1)請求出yx之間的函數(shù)關系式;

2)該款電子產(chǎn)品的銷售單價為多少元時,每天銷售利潤最大?最大利潤是多少元;

3)由于武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出300元捐贈給武漢,為了保證捐款后每天剩余利潤不低于450元,如何確定該款電子產(chǎn)品的銷售單價?

【答案】1y10x300;(220元時,最大利潤為1000元;(3)單價每件不低于15元,且不高于25.

【解析】

1)利用待定系數(shù)法求解可得;

2)設該款電子產(chǎn)品每天的銷售利潤為w元,根據(jù)總利潤=每件的利潤×銷售量可得函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質求解可得;

3)設捐款后每天剩余利潤為z元,根據(jù)題意得出z10x2400x300030010x2400x3300,求出z450時的x的值,求解可得.

解:(1)設yx的函數(shù)關系式為ykxb,

將(20,100),(25,50)代入ykxb,

解得,

yx的函數(shù)關系式為y10x300

2)設該款電子產(chǎn)品每天的銷售利潤為w元,

由題意得w=(x10y

=(x10)(10x300

10x2400x3000

10x2021000,

100

∴當x20時,w有最大值,w最大值為1000

答:該款電子產(chǎn)品銷售單價定為20元時,每天銷售利潤最大,最大銷售利潤為1000元;

3)設捐款后每天剩余利潤為z元,

由題意可得z10x2400x300030010x2400x3300,

z450,即10x2400x3300450

x240x3750,

解得x115,x225,

100

∴當該款電子產(chǎn)品的銷售單價每件不低于15元,且不高于25元時,可保證捐款后每天剩余利潤不低于450元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】近幾年,國內(nèi)快遞業(yè)務快速發(fā)展,由于其便捷、高效,人們越來越多地通過快遞公司代辦點來代寄包裹.某快遞公司某地區(qū)一代辦點對60天中每天代寄的包裹數(shù)與天數(shù)的數(shù)據(jù)(每天代寄包裹數(shù)、天數(shù)均為整數(shù))統(tǒng)計如下:

1)求該數(shù)據(jù)中每天代寄包裹數(shù)在范圍內(nèi)的天數(shù);

2)若該代辦點對顧客代寄包裹的收費標準為:重量小于或等于1千克的包裹收費8元;重量超1千克的包裹,在收費8元的基礎上,每超過1千克(不足1千克的按1千克計算)需再收取2元.

①某顧客到該代辦點寄重量為1.6千克的包裹,求該顧客應付多少元費用?

②這60天中,該代辦點為顧客代寄的包表中有一部分重量超過2千克,且不超過5千克.現(xiàn)從中隨機抽取40件包裹的重量數(shù)據(jù)作為樣本,統(tǒng)計如下:

重量G(單位:千克)

件數(shù)(單位:件)

15

10

15

求這40件包裹收取費用的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)操作發(fā)現(xiàn)

如圖①,在中,,點D上一點,沿折疊,使得點C恰好落在上的點E處.則的數(shù)量關系為______;________;

2)問題解決

如圖②,若(1)中,其他條件不變,請猜想之間的關系,并證明你的結論;

3)類比探究

如圖③,在四邊形中,,連接,點E上一點,沿折疊使得點D正好落在上的點F處,若,直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)的圖象由函數(shù)的圖象平移得到,且經(jīng)過點(1,2)

1)求這個一次函數(shù)的解析式;

2)當時,對于的每一個值,函數(shù)的值大于一次函數(shù)的值,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年某中學舉行的冬季陽徑運動會上,參加男子跳高的15名運動員的成績?nèi)绫硭荆?/span>

成績(m

1.80

1.50

1.60

1.65

1.70

1.75

人數(shù)

1

2

4

3

3

2

這些運動員跳高成績的中位數(shù)和眾數(shù)分別是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線11yk1x+3分別與x軸,y軸交于A(﹣3,0),B兩點,與直線l2yk2x交于點C,SAOC9

1)求tanBAO的值;

2)求出直線l2的解析式;

3P為線段AC上一點(不含端點),連接OP,一動點H從點O出發(fā),沿線段OP以每秒1個單位長度的速度運動到P,再沿線段PC以每秒個單位長度的速度運動到點C后停止,請直接寫出點H在整個運動過程的最少用時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.

1求y與x之間的函數(shù)表達式

2球在運動的過程中離地面的最大高度;

3小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的直角頂點軸的正半軸上,頂點在第一象限,函數(shù)的圖象與邊交于點,并且點為邊的中點.若的面積為12,則的值為______

查看答案和解析>>

同步練習冊答案