【題目】如圖,在⊙O中,AB、DE為⊙O的直徑,C是⊙O上一點,且=

(1)BECE有什么數(shù)量關(guān)系?為什么?

(2)若∠BOE=60°,則四邊形OACE是什么特殊的四邊形?請說明理由.

【答案】(1)BE=CE,證明見解析;(2)四邊形OACE是菱形,證明見解析;

【解析】

(1)根據(jù)對頂角相等得到∠AOD=∠BOE,再根據(jù)圓心角、弧、弦的關(guān)系得 ,加上 ,所以,于是有BE=CE;
(2)連結(jié)OC可得△COE和△AOC是等邊三角形,可得四邊形OACE的四條邊都相等,再根據(jù)菱形的判定即可求解.

(1)AB、DE是⊙O的直徑,

∴∠AOD=BOE,

,

,

BE=CE.

(2)連結(jié)OC,

∵∠BOE=60°,BE=CE,

∴∠COE=60°,

OC=OE,

∴△COE是等邊三角形,

∵∠AOC=180°﹣60°﹣60°=60°,OA=OC,

∴△AOC是等邊三角形,

OE=CE=OA=AC=OC,

∴四邊形OACE是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個箱子,其中甲箱內(nèi)有顆球,分別標記號碼,且號碼為不重復的整數(shù),乙箱內(nèi)沒有球.已知小育從甲箱內(nèi)拿出顆球放入乙箱后,乙箱內(nèi)球的號碼的中位數(shù)為.若此時甲箱內(nèi)有顆球的號碼小于,有顆球的號碼大于,若他們的中位數(shù)都為,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點邊上,,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC為⊙O的直徑,弦BDAC下列結(jié)論:①∠P+∠D=180°;②∠COB=DAB;③∠DBA=ABP;④∠DBO=ABP.其中正確的只有( 。

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙中每個小正方形的邊長為1,一段圓弧經(jīng)過格點,點O為坐標原點.

(1)該圖中弧所在圓的圓心D的坐標為   ;.

(2)根據(jù)(1)中的條件填空:

①圓D的半徑=   (結(jié)果保留根號);

②點(7,0)在圓D   (填”、“內(nèi)”);

③∠ADC的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司購買了一批、型芯片,其中型芯片的單價比型芯片的單價少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.

(1)求該公司購買的型芯片的單價各是多少元?

(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線經(jīng)過點,與軸,軸分別交于,兩點,點,

1)求的值和直線的函數(shù)表達式;

2)連結(jié),當是等腰三角形時,求的值;

3)若,點,分別在線段,線段上,當是等腰直角三角形且時,則的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,AB=2,點C上運動,且∠ACB=30°.

(1)求⊙O的半徑;

(2)設點C到直線AB的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案