精英家教網 > 初中數學 > 題目詳情

【題目】閱讀材料I:教材中我們學習了:若關于的一元二次方程的兩根為,根據這一性質,我們可以求出己知方程關于的代數式的值.

問題解決:

1)已知為方程的兩根,則 , ,那么 .(請你完成以上的填空)

閱讀材料II:已知,且.求的值.

解:由可知

,即

是方程的兩根.

問題解決:

2)已知.求的值;

3)若,則 .

【答案】1-3,-1,11;(2;(3.

【解析】

1)根據根與系數的關系,代值求解即可;

2)根據材料的解法,得出是方程的兩根,然后根據根與系數的關系代值求解即可;

3)根據材料的解法,得出是方程的兩根,然后根據根與系數的關系變換形式代值求解即可.

1)由題意,得-3-1,;

2)由,得

,且,即

是方程的兩根

;

3)由,得

是方程的兩根

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】對于一元二次方程,有下列說法:

,則方程必有一個根為1;

若方程有兩個不相等的實根,則方程必有兩個不相等的實根;

是方程的一個根,則一定有成立;

是一元二次方程的根,則

其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】再讀教材:寬與長的比是(約為)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調、勻稱的美感.世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設計,下面我們用寬為的矩形紙片折疊黃金矩形(提示:

第一步:在矩形紙片一端利用圖①的方法折出一個正方形,然后把紙片展平.

第二步:如圖,把這個正方形折成兩個相等的矩形,再把紙片展平.

第三步:折出內側矩形的對角線,并把折到圖中所示的處.

第四步:展平紙片,按照所得的點折出使則圖④中就會出現黃金矩形.

問題解決:

1)圖_ (保留根號);

2)如圖,判斷四邊形的形狀,并說明理由;

3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學組織學生到商場參加社會實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進價為120元,為尋求合適的銷售價格進行了4天的試銷,試銷情況如表所示:

(1觀察表中數據,x,y滿足什么函數關系?請求出這個函數關系式;

(2若商場計劃每天的銷售利潤為3000元,則其單價應定為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的部分圖象如圖,圖象過點,對稱軸為直線,下列結論:①;;④當時, 的值隨值的增大而增大;⑤當函數值時,自變量的取值范圍是.其中正確的結論有__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用水平線和豎直線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點,叫格點,以格點為頂點的多邊形叫格點多邊形.設格點多邊形的面積為,它各邊上格點的個數之和為.

探究一:圖中①—④的格點多邊形,其內部都只有一個格點,它們的面積與各邊上格點的個數之和的對應關系如表:

多邊形的序號

多邊形的面積

2

2.5

3

4

各邊上格點的個數和

4

5

6

8

之間的關系式為:________.

探究二:圖中⑤—⑧的格點多邊形內部都只有2個格點,請你先完善下表格的空格部分(即分別計算出對應格點多邊形的面積):

多邊形的序號

多邊形的面積

各邊上格點的個數和

4

5

6

8

之間的關系式為:________.

猜想:當格點多邊形內部有且只有個格點時,之間的關系式為:_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC和△BDE都是等邊三角形,點A,B,D在一條直線上。給出4個結論:①AE=CD;②AB⊥FB;③∠AFC=60°;④△BGH是等邊三角形。其中正確的是( )

A.①,②,③B.①,②,④

C.①,③,④D.②,③,④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“保護環(huán)境,人人有責”,為了更好的治理好金水河,鄭州市污水處理廠決定購買兩型號污水處理設備共10臺,其信息如下表:

單價(萬元/臺)

每臺處理污水量(噸/月)

12

220

10

200

1)設購買設備臺,所需資金共為W萬元,每月處理污水總量為y噸,試寫出W,之間的函數關系式;

2)經預算,市污水處理廠購買設備的資金不超過106萬元,月處理污水量不低于2040噸,請你列舉出所有購買方案,并指出哪種方案更省錢,需要多少資金?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,OEBDBC于點E,CD1,則CE的長為( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案