【題目】如圖,在中,,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使,連接FB,FC.
求證:四邊形ABFC是菱形;
若,,求半圓和菱形ABFC的面積.
只用一把無刻度的直尺,作出菱形AB上的高CH.
【答案】(1)證明見解析;(2).(3)見解析.
【解析】
(1)先根據(jù)等腰三角形三線合一得出CE=BE,再根據(jù)對角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
(2)設CD=x,連接BD.利用勾股定理構建方程即可解決問題;
(3)如圖,設BD交AE于K,作直線CK交AB于H.根據(jù)三角形的高相交于一點可得線段CH即為所求.
證明:是直徑,
,
,
,
,
,
四邊形ABFC是平行四邊形,
,
四邊形ABFC是菱形.
設連接BD.
是直徑,
,
,
,
解得或舍棄
,,
.
.
如圖,設BD交AE于K,作直線CK交AB于
是直徑,
,
三角形的高相交于一點
線段CH即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABC的頂點A在拋物線y=x2上,頂點B,C在x軸的正半軸上,且點B的坐標為(1,0)
(1)求點D坐標;
(2)將拋物線y=x2適當平移,使得平移后的拋物線同時經過點B與點D,求平移后拋物線解析式,并說明你是如何平移的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,蘭博基尼某車型車門設計屬于剪刀門設計,即車門關閉時位置如圖中四邊形ABCD,車門打開是繞點A逆時針旋轉至CD與AD垂直,已知四邊形ABCD與四邊形AB′C′D′在同一平面,若AD∥BC,∠D=45°,∠DAB′=30°,CD=60cm,則AB的長約為( 。≈1.7)
A. 21cmB. 42cmC. 51cmD. 60cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形AEFG均為菱形,且∠EAG=∠ABC.
(1)如圖1,點G在線段AD上,已知AD=5,AG=3,且cos∠ABC= ,連接AF,BF,求BF的長;
(2)如圖2,點G在菱形ABCD內部,連接BG、DE,若點M為DE中點,試猜想AM與BG之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將邊長為4的等邊△ABC的邊BC向兩端延長,使∠MAN=120°.
(1)求證:△MAB∽△ANC;
(2)若CN=4MB,求線段CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級男同學的體育考試準備情況,隨機抽取部分男同學進行100米跑步測試,按照成績分為優(yōu)秀、良好、合格與不合格四個等級,其中不合格學生占抽取學生總數(shù)的,學校繪制了如下不完整的統(tǒng)計圖:
通過計算補全條形統(tǒng)計圖;
校九年級有300名男生,請估計其中成績未達到良好和優(yōu)秀的有多少?
某班甲、乙兩位成績優(yōu)秀的同學被選中參加即將舉行的學校運動會1000米跑步比賽、預賽分為A、B、C三組進行,選手由抽簽確定分組,甲、乙兩人恰好分在同一組的概率是多少?請畫出樹狀圖或列表加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國”,我市中小學每年都要舉辦一屆科技運動會,下圖為我市某校今年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:
(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人:
(2)該校參加航模比賽的總人數(shù)是 人,空模所在扇形的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整.
(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎,今年我市中小學參加航模比賽人共有2485人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,點M是邊BA延長線上的動點(不與點A重合),且AM<AB,△CBE由△DAM平移得到.若過點E作EH⊥AC,H為垂足,則有以下結論:①點M位置變化,使得∠DHC=60°時,2BE=DM;②無論點M運動到何處,都有DM=HM;③無論點M運動到何處,∠CHM一定大于135°.其中正確結論的序號為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com