【題目】在△ABC中,AB=BC,以AB為直徑的⊙O與AC交于點D,過點D作DF⊥BC,交AB的延長線于E,垂足為F.
(1)如圖①,求證直線DE是⊙O的切線;
(2)如圖②,作DG⊥AB于H,交⊙O于G,若AB=5,AC=8,求DG的長.
【答案】
(1)證明:連接OD,如圖,
∵AB=BC,
∴∠A=∠C.
∵OA=OD,
∴∠A=∠ADO.
∴∠C=∠ADO.
∴OD∥BC.
∵DF⊥BC,
∴∠ODE=90°.
∴直線DE是⊙O的切線;
(2)解:連接DB,
∵AB是⊙O的直徑,
∴∠ADB=90°.
∵AB=BC,
∴AD=DC.
∵AC=8,
∴AD=4.
在Rt△ADB中,BD= = =3,
∵DG⊥AB于H,
由三角形面積公式,得ABDH=ADDB.
∴DH= = ,
∵AB⊥DG,
∴DG=2DH=
【解析】(Ⅰ)連接OD,由AB=BC,OA=OD,得到∠A=∠C,∠A=∠ADO,則∠C=∠ADO,得到OD∥BC;而DF⊥BC,則∠ODE=90°,根據(jù)切線的判定定理即可得到結(jié)論;(Ⅱ)連接BD,AB是⊙O的直徑,根據(jù)圓周角定理的推論得到∠ADB=90°.而AB=BC,則AD=DC=4.在Rt△ADB中,利用勾股定理可計算出BD=3,再利用等積法得到ABDH=ADDB,可計算出DH,然后根據(jù)垂徑定理得到DG=2DH.
【考點精析】關(guān)于本題考查的勾股定理的概念和圓周角定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的2018年元月份的月歷表中,任意框出表中豎列上四個數(shù),這四個數(shù)的和可能是( )
A. 86 B. 78 C. 60 D. 101
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,E為OC上動點(與點O不重合),作AF⊥BE,垂足為G,交BO于H.連接OG、CG.
(1)求證:AH=BE;
(2)試探究:∠AGO 的度數(shù)是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》“勾股”章的問題::“今有二人同所立,甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會.問甲、乙各行幾何?”大意是說:如圖,甲乙二人從A處同時出發(fā),甲的速度與乙的速度之比為7:3,乙一直向東走,甲先向南走十步到達C處,后沿北偏東某方向走了一段距離后與乙在B處相遇,這時,甲乙各走了多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示﹣10,點B表示11,點C表示18.動點P從點A出發(fā),沿數(shù)軸正方向以每秒2個單位的速度勻速運動;同時,動點Q從點C出發(fā),沿數(shù)軸負方向以每秒1個單位的速度勻速運動.設(shè)運動時間為t秒.
(1)當(dāng)t為何值時,P、Q兩點相遇?相遇點M所對應(yīng)的數(shù)是多少?
(2)在點Q出發(fā)后到達點B之前,求t為何值時,點P到點O的距離與點Q到點B的距離相等;
(3)在點P向右運動的過程中,N是AP的中點,在點P到達點C之前,求2CN﹣PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB,E、F、G、H分別是AB,BC,CD,AD邊上的點,EG⊥FH,F(xiàn)H=2 ,則四邊形EFGH的面積為( )
A.8
B.8
C.12
D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤
A. 10 B. 20 C. 30 D. 25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點C在線段AB上,線段AC=10厘米,BC=6厘米,點M,N分別是AC,BC的中點.
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動點P、Q分別從A、B同時出發(fā),點P以2cm/s的速度沿AB向右運動,終點為B,點Q以1cm/s的速度沿AB向左運動,終點為A,當(dāng)一個點到達終點,另一個點也隨之停止運動,求運動多少秒時,C、P、Q三點有一點恰好是以另兩點為端點的線段的中點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批彩色彈力球的質(zhì)量檢驗結(jié)果如下表:
抽取的彩色彈力球數(shù)n | 500 | 1000 | 1500 | 2000 | 2500 |
優(yōu)等品頻數(shù)m | 471 | 946 | 1426 | 1898 | 2370 |
優(yōu)等品頻率 | 0.942 | 0.946 | 0.951 | 0.949 | 0.948 |
(1)請在圖中完成這批彩色彈力球“優(yōu)等品”頻率的折線統(tǒng)計圖
(2)這批彩色彈力球“優(yōu)等品”概率的估計值大約是多少?(精確到0.01)
(3)從這批彩色彈力球中選擇5個黃球、13個黑球、22個紅球,它們除了顏色外都相同,將它們放入一個不透明的袋子中,求從袋子中摸出一個球是黃球的概率.
(4)現(xiàn)從第(3)問所說的袋子中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個黃球的概率為,求取出了多少個黑球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com