【題目】如圖,正方形ABCD的邊長(zhǎng)為1,對(duì)角線AC、BD交于點(diǎn)O,E是BC延長(zhǎng)線上一點(diǎn),且AC=EC,連接AE交BD于點(diǎn)P.
(1)求∠DAE的度數(shù);
(2)求BP的長(zhǎng).
【答案】(1)求∠DAE=22.5°;(2)BP=1
【解析】
(1)由正方形得到∠ACB=45°,,由AC=EC,根據(jù)等腰三角形的等邊對(duì)等角的性質(zhì),及三角形外角的性質(zhì)得到∠E=22.5°,依據(jù)平行線的性質(zhì)即可得到∠DAE的度數(shù);
(2)由正方形得到AB=1,∠DAB=90°,∠DBC=45°,依據(jù)三角形外角的性質(zhì)得到∠APB=∠E+∠DBC=67.5°,而∠BAP=90°-22.5°=67.5°,故而∠BAP=∠APB,依據(jù)三角形等角對(duì)等邊的性質(zhì)即可求得BP的長(zhǎng).
解:(1)∵四邊形ABCD的正方形,
∴∠ACB=45°,,
∵AC=EC,
∴∠E=∠EAC,
又∵∠ACB=∠E+∠EAC=45°,
∴∠E=22.5°,
∵,
∴∠DAE=∠E=22.5°;
(2)∵四邊形ABCD是正方形,正方形ABCD的邊長(zhǎng)是1,
∴AB=1,∠DAB=90°,∠DBC=45°,
∵∠DAE=22.5°,
∴∠BAP=90°-22.5°=67.5°,∠APB=∠E+∠DBC=22.5°+45°=67.5°,
∴∠BAP=∠APB,
∴BP=AB=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的分式方程①和一元二次方程②中,m為常數(shù),方程①的根為非負(fù)數(shù).
(1)求m的取值范圍;
(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,將此矩形繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)θ(0<θ<180°)得到矩形A1BC1D1,直線BA1、C1D1分別與直線CD相交于點(diǎn)E、F.
(1)若此矩形繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)90°,求DD1的長(zhǎng);
(2)在旋轉(zhuǎn)過(guò)程中,點(diǎn)D、A1、D1三點(diǎn)共線時(shí),求△BCE的面積;
(3)在矩形ABCD旋轉(zhuǎn)的過(guò)程中,是否存在某個(gè)位置使得以B、E、F、D1為頂點(diǎn)的四邊形為平行四邊形?若存在,求出CF的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,是線段上的點(diǎn),是線段上的點(diǎn),且.
(1)觀察猜想
如圖1,若點(diǎn)是線段的三等分點(diǎn),則__________,___________.由此,我們猜想線段,,,之間滿足的數(shù)量關(guān)系是_________.
(2)類比探究
將在平面內(nèi)繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)一定的角度,連接,,,,猜想在旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)僅就圖2的情形給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題
將在平面內(nèi)繞點(diǎn)自由旋轉(zhuǎn),若,請(qǐng)直接寫出線段的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+x+3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C,點(diǎn)P為拋物線對(duì)稱軸上一點(diǎn).則△APC的周長(zhǎng)最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,點(diǎn)、是上兩點(diǎn),,交的延長(zhǎng)線于點(diǎn).
(1)求證:.
(2)若,的半徑為5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比函數(shù)的圖象如圖所示.
(1)求m的值;
(2)當(dāng)x>﹣1時(shí),y的取值范圍是 ;
(3)當(dāng)直線y2=﹣x與雙曲線交于A、B兩點(diǎn)(A在B的左邊)時(shí),結(jié)合圖象,求出在什么范圍時(shí)y2>y1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三地順次在同-直線上,甲、乙兩人均騎車從地出發(fā),向地勻速行駛.甲比乙早出發(fā)分鐘;甲到達(dá)地并休息了分鐘后,乙追上了甲.甲、乙同時(shí)從地以各自原速繼續(xù)向地行駛.當(dāng)乙到達(dá)地后,乙立即掉頭并提速為原速的倍按原路返回地,而甲也立即提速為原速的二倍繼續(xù)向地行駛,到達(dá)地就停止.若甲、乙間的距離(米)與甲出發(fā)的時(shí)間(分)之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是( )
A.甲、乙提速前的速度分別為米/分、米/分.
B.兩地相距米
C.甲從地到地共用時(shí)分鐘
D.當(dāng)甲到達(dá)地時(shí),乙距地米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將拋物線y=ax2(﹣1<a<0)平移到頂點(diǎn)恰好落在直線y=x﹣3上,并設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為m.
(1)求拋物線的解析式(用含a、m的代數(shù)式表示)
(2)如圖②,Rt△ABC與拋物線交于A、D、C三點(diǎn),∠B=90°,AB∥x軸,AD=2,BD:BC=1:2.
①求△ADC的面積(用含a的代數(shù)式表示)
②若△ADC的面積為1,當(dāng)2m﹣1≤x≤2m+1時(shí),y的最大值為﹣3,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com