【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線AO交BC于點(diǎn)O,以O為圓心,OC長(zhǎng)為半徑作⊙O,⊙O交AO所在的直線于D、E兩點(diǎn)(點(diǎn)D在BC左側(cè)).
(1)求證:AB是⊙O的切線;
(2)連接CD,若AC=AD,求tan∠D的值;
(3)在(2)的條件下,若⊙O的半徑為5,求AB的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)tan∠D=;(3)AB=.
【解析】
(1)如圖,過(guò)點(diǎn)O作OF⊥AB,,求出OC=OF,證明OF為⊙O半徑,且OF⊥AB,即可求解;
(2)連接CE,根據(jù)∠ACE=∠D,且∠A=∠A,求出△ACE∽△ADC,可得,即可求解;
(3)根據(jù)△ACE∽△ADC,得,根據(jù)AO=AO,OC=OF,證明Rt△AOF≌Rt△AOC,求出AF=AC=12,根據(jù)∠B=∠B,∠OFB=∠ACB=90°,證明△OBF∽△ABC,可得
,求出BF,即可求解.
證明:(1)如圖,過(guò)點(diǎn)O作OF⊥AB,
∵AO平分∠BAC,OF⊥AB,∠ACB=90°
∴OC=OF,
∴OF為⊙O半徑,且OF⊥AB
∴AB是⊙O切線.
(2)連接CE
∵DE是直徑
∴∠DCE=90°
∵∠ACB=90°
∴∠DCE=∠ACB
∴∠DCO=∠ACE
∵OC=OD
∴∠D=∠DCO
∴∠ACE=∠D,且∠A=∠A
∴△ACE∽△ADC
∴
∴tan∠D==
(3)∵△ACE∽△ADC
∴
∴AC2=AD(AD﹣10),且AC=AD
∴AD=18
∴AC=12
∵AO=AO,OC=OF
∴Rt△AOF≌Rt△AOC(HL)
∴AF=AC=12
∵∠B=∠B,∠OFB=∠ACB=90°
∴△OBF∽△ABC
∴
即
∴
∴BF=
∴AB=FA+BF=12+=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)A在y軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點(diǎn)B與點(diǎn)O重合,點(diǎn)C落在第三象限的G點(diǎn)處,作EH⊥x軸于H,過(guò)E點(diǎn)的反比例函數(shù)y=圖象恰好過(guò)DE的中點(diǎn)F.則k=_____,線段EH的長(zhǎng)為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△OAB的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,∠AOB=90°,AO=2BO,當(dāng)A點(diǎn)在反比例函數(shù) (x>0)的圖象上移動(dòng)時(shí),B點(diǎn)坐標(biāo)滿足的函數(shù)解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)E,F分別在AD,CD上,且DE=CF,AF與BE相交于點(diǎn)G.
(1)求證:BE=AF;
(2)若AB=4,DE=1,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對(duì)于任意實(shí)數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓展學(xué)生視野,促進(jìn)書(shū)本知識(shí)與生活實(shí)踐的深度融合,荊州市某中學(xué)組織八年級(jí)全體學(xué)生前往松滋洈水研學(xué)基地開(kāi)展研學(xué)活動(dòng).在此次活動(dòng)中,若每位老師帶隊(duì)14名學(xué)生,則還剩10名學(xué)生沒(méi)老師帶;若每位老師帶隊(duì)15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車(chē),它們的載客量和租金如表所示:
甲型客車(chē) | 乙型客車(chē) | |
載客量(人/輛) | 35 | 30 |
租金(元/輛) | 400 | 320 |
學(xué)校計(jì)劃此次研學(xué)活動(dòng)的租金總費(fèi)用不超過(guò)3000元,為安全起見(jiàn),每輛客車(chē)上至少要有2名老師.
(1)參加此次研學(xué)活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車(chē)坐,又要保證每輛車(chē)上至少要有2名老師,可知租車(chē)總輛數(shù)為 輛;
(3)學(xué)校共有幾種租車(chē)方案?最少租車(chē)費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△AOB的三個(gè)頂點(diǎn)A、O、B分別落在拋物線F1:的圖象上,點(diǎn)A的橫坐標(biāo)為﹣4,點(diǎn)B的縱坐標(biāo)為﹣2.(點(diǎn)A在點(diǎn)B的左側(cè))
(1)求點(diǎn)A、B的坐標(biāo);
(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A'OB',拋物線F2:經(jīng)過(guò)A'、B'兩點(diǎn),已知點(diǎn)M為拋物線F2的對(duì)稱(chēng)軸上一定點(diǎn),且點(diǎn)A'恰好在以OM為直徑的圓上,連接OM、A'M,求△OA'M的面積;
(3)如圖2,延長(zhǎng)OB'交拋物線F2于點(diǎn)C,連接A'C,在坐標(biāo)軸上是否存在點(diǎn)D,使得以A、O、D為頂點(diǎn)的三角形與△OA'C相似.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知⊙O外一點(diǎn)P向⊙O作切線PA,點(diǎn)A為切點(diǎn),連接PO并延長(zhǎng)交⊙O于點(diǎn)B,連接AO并延長(zhǎng)交⊙O于點(diǎn)C,過(guò)點(diǎn)C作,分別交PB于點(diǎn)E,交⊙O于點(diǎn)D,連接AD.
(1)求證:△APO~△DCA;
(2)如圖2,當(dāng)時(shí)
①求的度數(shù);
②連接AB,在⊙O上是否存在點(diǎn)Q使得四邊形APQB是菱形.若存在,請(qǐng)直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn),點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn),得,點(diǎn),旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,.記旋轉(zhuǎn)角為.
(Ⅰ)如圖①,若,求的長(zhǎng);
(Ⅱ)如圖②,若,求點(diǎn)的坐標(biāo);
(Ⅲ)記為的中點(diǎn),S為的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com