【題目】我們規(guī)定:a*b=,則下列等式中對(duì)于任意實(shí)數(shù) a、b、c 都成立的是( )

①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c

③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)

A. ①②③ B. ①②④ C. ①③④ D. ②④

【答案】B

【解析】

根據(jù)*的含義,以及實(shí)數(shù)的運(yùn)算方法,判斷出對(duì)于任意實(shí)數(shù) a、b、c 都成立的是哪個(gè)等式即可.

a+(b*c)=a+,(a+b)*(a+c)=

∴選項(xiàng)①符合題意;

a*(b+c)=,(a+b)*c=,

∴選項(xiàng)②符合題意

a*(b+c)=,(a*b)+(a*c)=+=a+,

∴選項(xiàng)③不符合題意;

(a*b)+c=+c, +(b*2c)=+ =+c,

∴選項(xiàng)④符合題意,

∴等式中對(duì)于任意實(shí)數(shù) a、b、c 都成立的是:①②④

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,的交點(diǎn)為,現(xiàn)作如下操作:

第一次操作,分別作的平分線,交點(diǎn)為,

第二次操作,分別作的平分線,交點(diǎn)為,

第三次操作,分別作的平分線,交點(diǎn)為,

次操作,分別作的平分線,交點(diǎn)為

度,那等于__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P( +1, ﹣1)在雙曲線y= (x>0)上.

(1)求k的值;
(2)若正方形ABCD的頂點(diǎn)C,D在雙曲線y= (x>0)上,頂點(diǎn)A,B分別在x軸和y軸的正半軸上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).

(1)試說(shuō)明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對(duì)應(yīng)邊為DE,請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)F的坐標(biāo);
(3)畫出(2)中的△DEF,并和△ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)A、B坐標(biāo)分別為(0,4)、(2,0),點(diǎn)C為直線AB上一點(diǎn),若BC3AC,則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,tan∠ABC= ,P為AB上一點(diǎn),以PB為邊向外作菱形PMNB,連結(jié)DM,取DM中點(diǎn)E,連結(jié)AE,PE,則 的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,B90°ACB30°,AB2,CD3AD5

1)求證:ACCD;

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MN,EF是兩面互相平行的鏡面,根據(jù)鏡面反射規(guī)律,若一束光線AB照射到鏡面MN,反射光線為BC,則一定有∠1=2.試根據(jù)這一規(guī)律:

(1)利用直尺和量角器作出光線BC經(jīng)鏡面EF反射后的反射光線CD;

(2)試判斷ABCD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案