【題目】已知等邊ABC的邊長(zhǎng)為2,

1)如圖1,在邊BC上有一個(gè)動(dòng)點(diǎn)P,在邊AC上有一個(gè)動(dòng)點(diǎn)D,滿足∠APD60°,求證:ABPPCD

2)如圖2,若點(diǎn)P在射線BC上運(yùn)動(dòng),點(diǎn)D在直線AC上,滿足∠APD120°,當(dāng)PC1時(shí),求AD的長(zhǎng)

3)在(2)的條件下,將點(diǎn)D繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)120°到點(diǎn)D',如圖3,求D′AP的面積.

【答案】1)見解析;(2;(3

【解析】

1)先利用三角形的內(nèi)角和得出∠BAP+∠APB120°,再用平角得出∠APB+∠CPD120°,進(jìn)而得出∠BAP∠CPD,即可得出結(jié)論;

2)先構(gòu)造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,進(jìn)而求出AP,再判斷出△ACP∽∠APD,得出比例式即可得出結(jié)論;

3)先求出CD,進(jìn)而得出CD',再構(gòu)造出直角三角形求出D'H,進(jìn)而得出D'G,再求出AM,最后用面積差即可得出結(jié)論.

解:(1∵△ABC是等邊三角形,

∴∠B∠C60°,

△ABP中,∠B+∠APB+∠BAP180°,

∴∠BAP+∠APB120°

∵∠APB+∠CPD180°∠APD120°,

∴∠BAP∠CPD,

∴△ABP∽△PCD;

2)如圖2,過點(diǎn)PPE⊥ACE

∴∠AEP90°,

∵△ABC是等邊三角形,

∴AC2∠ACB60°,

∴∠PCE60°,

Rt△CPE中,CP1∠CPE90°∠PCE30°,

∴CECP

根據(jù)勾股定理得,PE,

Rt△APE中,AEAC+CE2+,

根據(jù)勾股定理得,AP2AE2+PE27,

∵∠ACB60°,

∴∠ACP120°∠APD,

∵∠CAP∠PAD,

∴△ACP∽△APD

,

∴AD;

3)如圖3,由(2)知,AD

∵AC2,

∴CDADAC

由旋轉(zhuǎn)知,∠DCD'120°,CD'CD,

∵∠DCP60°

∴∠ACD'∠DCP60°,

過點(diǎn)D'D'H⊥CPH

Rt△CHD'中,CHCD'

根據(jù)勾股定理得,D'HCH,

過點(diǎn)D'D'G⊥ACG,

∵∠ACD'∠PCD',

∴D'GD'H(角平分線定理),

∴S四邊形ACPD'SACD'+SPCD'ACD'G+CPDH'×2×+×1×

過點(diǎn)AAM⊥BCM,

∵ABAC

∴BMBC1,

Rt△ABM中,根據(jù)勾股定理得,AMBM

∴SACPCPAM×1×,

∴SD'APS四邊形ACPD'SACP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D、E、F、G,如圖所示.已知∠CGD42

1)求∠CEF的度數(shù).

2)將直尺向下平移,使直尺的邊緣通過點(diǎn)B,交AC于點(diǎn)H,如圖所示.點(diǎn)H、B的讀數(shù)分別為413.4,求BC的長(zhǎng)(精確到0.1)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74tan42°=0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,弦CD平分∠ACB,點(diǎn)E為弧AD上一點(diǎn),連接CE、DE,CDAB交于點(diǎn)N.

(1)如圖1,求證:∠AND=CED;

(2)如圖2,AB為⊙O直徑,連接BE、BD,BECD交于點(diǎn)F,若2BDC=90°﹣DBE,求證:CD=CE;

(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB90°,EAB的中點(diǎn),

1)求證:AC2ABAD

2)求證:CEAD;

3)若AD4AB6,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O.過點(diǎn)CBD的平行線,過點(diǎn)DAC的平行線,兩直線相交于點(diǎn)E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定加強(qiáng)羽毛球,籃球,乒乓球,排球,足球五項(xiàng)球類運(yùn)動(dòng),每位同學(xué)必須且只能選擇一項(xiàng)運(yùn)動(dòng)項(xiàng)目.對(duì)全校學(xué)生選取進(jìn)行隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

運(yùn)動(dòng)項(xiàng)目

頻數(shù)(人數(shù))

羽毛球

乒乓球

12

請(qǐng)根據(jù)以上圖表信息解答下列問題:

1)頻數(shù)分布表中的=  = 

2)在扇形統(tǒng)計(jì)圖中,羽毛球所在的扇形的圓心角的度數(shù)為 

3)全校有多少名學(xué)生選擇參加籃球運(yùn)動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教師為了對(duì)學(xué)生零花錢的使用進(jìn)行教育指導(dǎo),對(duì)全班50名學(xué)生每人一周內(nèi)的零花錢數(shù)額進(jìn)行統(tǒng)計(jì)調(diào)查,并繪制了統(tǒng)計(jì)表及統(tǒng)計(jì)圖,如圖所示.

(1)50名學(xué)生每人一周內(nèi)的零花錢數(shù)額的平均數(shù)是_______/人;

(2)如果把全班50名學(xué)生每人一周內(nèi)的零花錢按照不同數(shù)額人數(shù)繪制成扇形統(tǒng)計(jì)圖,則一周內(nèi)的零花錢數(shù)額為5元的人數(shù)所占的圓心角度數(shù)是_____度;

(3)一周內(nèi)的零花錢數(shù)額為20元的有5人,其中有2名是女生, 3名是男生,現(xiàn)從這5人中選2名進(jìn)行個(gè)別教育指導(dǎo),請(qǐng)用畫樹狀圖或列表法求出剛好選中2名是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:-11,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽出一張記下數(shù)字,放回洗勻后再?gòu)闹须S機(jī)抽出一張記下數(shù)字.

(1)請(qǐng)用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

(2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(x,y)落在雙曲線上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案