【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點(diǎn)M,CF與AD交于點(diǎn)N.
(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿(mǎn)足何種關(guān)系時(shí),四邊形AMCN是菱形,證明你的結(jié)論.
【答案】
(1)
證明:∵四邊形ABCD是矩形,
∴∠B=∠D=90°,AB=CD,AD∥BC,
∵四邊形AECF是矩形,∴AE∥CF,
∴四邊形AMCN是平行四邊形,
∴AM=CN,
在Rt△ABM和Rt△CDN中,
∵ ,
∴Rt△ABM≌Rt△CDN(HL)
(2)
解:當(dāng)AB=AF時(shí),四邊形AMCN是菱形,
理由:∵四邊形ABCD、AECF是矩形,
∴∠B=∠BAD=∠EAF=∠F=90°,
∴∠BAD﹣∠NAM=∠EAF﹣∠NAM,即∠BAM=∠FAN,
在△ABM和△AFN中∠BAM=∠FAN,AB=AF,∠B=∠F
∵ ,
∴△ABM≌△AFN(ASA),
∴AM=AN,
由(1)知四邊形AMCN是平行四邊形,
∴平行四邊形AMCN是菱形.
【解析】(1)利用矩形的性質(zhì)結(jié)合平行四邊形的判定于性質(zhì)得出AM=CN,進(jìn)而得出Rt△ABM≌Rt△CDN;(2)利用全等三角形的判定得出△ABM≌△AFN(ASA),進(jìn)而得出四邊形AMCN是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于反比例函數(shù)y=的下列說(shuō)法正確的是( )
① 該函數(shù)的圖象在第二、四象限;
② A(x1、y1)、B(x2、y2)兩點(diǎn)在該函數(shù)圖象上,若x1<x2,則y1<y2;
③ 當(dāng)x>2時(shí),則y>-2;
④ 若反比例函數(shù)y=與一次函數(shù)y=x+b的圖象無(wú)交點(diǎn),則b的范圍是-4<b<4.
A. ① ③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點(diǎn),交x軸于點(diǎn)C.
(1)求m、n的值;
(2)請(qǐng)直接寫(xiě)出不等式kx+b<的解集;
(3)將x軸下方的圖像沿x軸翻折,點(diǎn)B落在點(diǎn)B′處,連接AB′、B′C,求△A B′C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程x2-(2k+1)x+4k-2=0
(1)求證:不論k取何值,這個(gè)方程總有實(shí)數(shù)根
(2)若等腰△ABC一邊長(zhǎng)a=4,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩根,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).
(1)點(diǎn)B表示的數(shù)是_________________;
(2)若點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是________;
(3)若點(diǎn)A、B分別以每秒1個(gè)單位長(zhǎng)度、3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線(xiàn)段的中點(diǎn),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABM=37°,AB=20,C是射線(xiàn)BM上一點(diǎn).
(1)求點(diǎn)A到BM的距離;
(2)在下列條件中,可以唯一確定BC長(zhǎng)的是;(填寫(xiě)所有符合條件的序號(hào))
①AC=13;②tan∠ACB= ;③連接AC,△ABC的面積為126.
(3)在(2)的答案中,選擇一個(gè)作為條件,畫(huà)出草圖,求BC.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.
(1)求(﹣3)5的值;
(2)若(﹣2)x=6,求x的值;
(3)若3(2x)=﹣4+x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B在線(xiàn)段EF上,點(diǎn)M、N分別是線(xiàn)段EA、BF的中點(diǎn),EA:AB:BF=1:2:3,若MN=8cm,則線(xiàn)段EF的長(zhǎng)是( )
A. 10 cm B. 11 cm C. 12 cm D. 13 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)寫(xiě)出數(shù)軸上A、B兩點(diǎn)表示的數(shù);
(2)動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,t為何值時(shí),原點(diǎn)O、與P、Q三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線(xiàn)段的中點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com