【題目】二次函數(shù)yax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿足下表:

x

-3

-2

-1

0

1

y

-3

-2

-3

-6

-11

則該函數(shù)圖象上的點(diǎn)(﹣6y1),(m2+2m+3,y2)則下列選項(xiàng)正確的是( 。

A.y1y2B.y1y2C.y1y2D.y1y2

【答案】B

【解析】

利用表中數(shù)據(jù)確定拋物線的對(duì)稱軸和開(kāi)口方向,然后根據(jù)拋物線的對(duì)稱性求解.

利用表中數(shù)據(jù)得拋物線的對(duì)稱軸為直線x=﹣2,開(kāi)口向下,

所以點(diǎn)(﹣6y1)到對(duì)稱軸的距離為|6+2|4,

m2+2m+3﹣(﹣2)=(m+12+4

點(diǎn)(m2+2m+3,y2)到對(duì)稱軸的距離最小值是4,

y1y2

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別是3和7,則它的周長(zhǎng)為(
A.17
B.15
C.13
D.13或17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD邊長(zhǎng)為3,點(diǎn)E在AB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長(zhǎng)取最小值時(shí),四邊形AEPQ的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.

(1)a= , c=
(2)如圖所示,在(1)的條件下,若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB,則b=
(3)在(1)(2)的條件下,若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x= , 最小值為
(4)在(1)(2)的條件下,若在點(diǎn)B處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)C處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

(1)若直線y=mx+1與拋物線具有“一帶一路”關(guān)系,求m,n的值;

(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

(3)當(dāng)常數(shù)k滿足≤k≤2時(shí),求拋物線L:的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),若BD=12cm,△DOE的周長(zhǎng)為15cm,則ABCD的周長(zhǎng)為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凱里市某文具店某種型號(hào)的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠,優(yōu)勢(shì)方法是:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買的18只計(jì)算器都按每只19.2元的價(jià)格購(gòu)買,但是每只計(jì)算器的最低售價(jià)為16元.

(1)求一次至少購(gòu)買多少只計(jì)算器,才能以最低價(jià)購(gòu)買?

(2)求寫出該文具店一次銷售x(x10)只時(shí),所獲利潤(rùn)y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購(gòu)買了46只,乙顧客購(gòu)買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時(shí),為了獲得最大利潤(rùn),店家一次應(yīng)賣多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:
; ; ;


=
=
=
解答下列問(wèn)題:
(1)在和式 中,第5項(xiàng)為 , 第n項(xiàng)為 ,上述求和的想法是:將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個(gè)數(shù)之差,使得首末兩項(xiàng)外的中間各項(xiàng)可以 , 從而達(dá)到求和目的.
(2)利用上述結(jié)論計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案