【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長(zhǎng).

【答案】
(1)證明:在ABCD中,

AB=CD,AB∥CD.

∵E、F分別是AB、CD的中點(diǎn),

∴BE=DF.

∴四邊形EBFD是平行四邊形


(2)解:∵AD=AE,∠A=60°,

∴△ADE是等邊三角形.

∴DE=AD=2,

又∵BE=AE=2,

由(1)知四邊形EBFD是平行四邊形,

∴四邊形EBFD的周長(zhǎng)=2(BE+DE)=8


【解析】(1)、在ABCD中,AB=CD,AB∥CD,又E、F分別是邊AB、CD的中點(diǎn),所以BE=CF,因此四邊形EBFD是平行四邊形;(2)、由AD=AE=2,∠A=60°知△ADE是等邊三角形,又E、F分別是邊AB、CD的中點(diǎn),四邊形EBFD是平行四邊形,所以EB=BF=FD=DE=2,四邊形EBFD是平行四邊形的周長(zhǎng)是2+2+2+2=8
【考點(diǎn)精析】本題主要考查了三角形中位線定理和平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式 ﹣1,并寫出它的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

(1)求m關(guān)于x的一次函數(shù)表達(dá)式;

(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格﹣每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(

A.(4n﹣1, B.(2n﹣1, C.(4n+1, D.(2n+1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決相關(guān)的問題.
按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項(xiàng),記為a1 , 依此類推,排在第n位的數(shù)稱為第n項(xiàng),記為an
一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,2,4,8,…為等比數(shù)列,其中a1=1,公比為q=2.
則:
(1)等比數(shù)列3,6,12,…的公比q為 , 第6項(xiàng)是
(2)如果一個(gè)數(shù)列a1 , a2 , a3 , a4 , …是等比數(shù)列,且公比為q,那么根據(jù)定義可得到: =q, =q, =q,… =q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代數(shù)式表示).
(3)對(duì)等比數(shù)列1,2,4,…,2n﹣1求和,可采用如下方法進(jìn)行:
設(shè)S=1+2+4+…+2n﹣1 ①,
則2S=2+4+…+2n ②,
②﹣①得:S=2n﹣1
利用上述方法計(jì)算:1+3+9+…+3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.

(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x40),請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

(2)在(1)問條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.

(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為2的等邊ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)(﹣a23的結(jié)果是(
A.﹣a5
B.a5
C.﹣a6
D.a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA延長(zhǎng)線上的一點(diǎn),AF=AB,已知△ABE≌△ADF.

(1)在圖中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置;
(2)線段BE與DF有什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案