【題目】已知,矩形中,,的垂直平分線分別交于點(diǎn),垂足為.
(1)如圖1,連接,求證:四邊形為菱形;
(2)如圖2,動(dòng)點(diǎn)分別從兩點(diǎn)同時(shí)出發(fā),沿和各邊勻速運(yùn)動(dòng)一周,即點(diǎn)自停止,點(diǎn)自停止.在運(yùn)動(dòng)過程中,
①已知點(diǎn)的速度為每秒,點(diǎn)的速度為每秒,運(yùn)動(dòng)時(shí)間為秒,當(dāng)四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),則____________.
②若點(diǎn)的運(yùn)動(dòng)路程分別為 (單位:),已知四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則與滿足的數(shù)量關(guān)系式為____________.
【答案】(1)見解析;(2)①;②
【解析】
(1)先證明四邊形AFCE為平行四邊形,再根據(jù)對(duì)角線互相垂直平分的平行四邊形是菱形作出判定;
(2)①分情況討論可知,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;
②分三種情況討論可知a與b滿足的數(shù)量關(guān)系式.
(1)證明:∵四邊形是矩形,
∴
∴,
∵垂直平分,垂足為,
∴,
∴,
∴,
∴四邊形為平行四邊形,
又∵
∴四邊形為菱形,
(2)①秒.
顯然當(dāng)點(diǎn)在上時(shí),點(diǎn)在上,此時(shí)四點(diǎn)不可能構(gòu)成平行四邊形;同理點(diǎn)在上時(shí),點(diǎn)在或上,也不能構(gòu)成平行四邊形.因此只有當(dāng)點(diǎn)在上、點(diǎn)在上時(shí),才能構(gòu)成平行四邊形.
∴以四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),
∴點(diǎn)的速度為每秒,點(diǎn)的速度為每秒,運(yùn)動(dòng)時(shí)間為秒,
∴,
∴,解得
∴以四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),秒.
②與滿足的數(shù)量關(guān)系式是,
由題意得,以四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),
點(diǎn)在互相平行的對(duì)應(yīng)邊上,分三種情況:
i)如圖1,當(dāng)點(diǎn)在上、點(diǎn)在上時(shí),,即,得.
ii)如圖2,當(dāng)點(diǎn)在上、點(diǎn)在上時(shí),,即,得.
iii)如圖3,當(dāng)點(diǎn)在上、點(diǎn)在上時(shí),,即,得.
綜上所述,與滿足的數(shù)量關(guān)系式是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)如圖1,四邊形中,,,,,經(jīng)過點(diǎn)的直線將四邊形分成兩部分,直線與所成的角設(shè)為,將四邊形的直角沿直線折疊,點(diǎn)落在點(diǎn)處,我們把這個(gè)操作過程記為.
(理解)若點(diǎn)與點(diǎn)重合,則這個(gè)操作過程為[__________,__________];
(嘗試)
(1)若點(diǎn)恰為的中點(diǎn)(如圖2),求;
(2)經(jīng)過操作,點(diǎn)落在處,若點(diǎn)在四邊形的邊上(如圖3),求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時(shí)間x(天)之間是反比例函數(shù)關(guān)系,其圖象如圖所示.
(1)求這個(gè)反比例函數(shù)的表達(dá)式;
(2)由于緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸貨多少噸?
(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時(shí)間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,E是半圓周上的三等分點(diǎn),直徑BC=2,AD⊥BC,垂足為D,連接BE交AD于F,過A作AG∥BE交BC于G.
(1)判斷直線AG與⊙O的位置關(guān)系,并說明理由.
(2)求線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)x,y定義一種新運(yùn)算x[]y= (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則混合運(yùn)算,例如:0[]2= =﹣2b.已知1[]2=3,﹣1[]3=﹣2.請(qǐng)解答下列問題.
(1)求a,b的值;
(2)若M=(m2﹣m﹣1)[](2m﹣2m2),則稱M是m的函數(shù),當(dāng)自變量m在﹣1≤m≤3的范圍內(nèi)取值時(shí),函數(shù)值M為整數(shù)的個(gè)數(shù)記為k,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從D,E兩處測(cè)得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長(zhǎng)交AB于點(diǎn)E,連接EN并延長(zhǎng)交CD于點(diǎn)F,以下結(jié)論:
①E為AB的中點(diǎn);
②FC=4DF;
③S△ECF=;
④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.
其中一定正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.
(1)求內(nèi)切圓的半徑;
(2)若移動(dòng)圓心的位置,使保持與的邊、都相切.
①求半徑的取值范圍;
②當(dāng)的半徑為時(shí),求圓心的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com