【題目】如圖,矩形ABCD中,EAC的中點(diǎn),點(diǎn)A、Bx軸上.若函數(shù) )的圖像過(guò)DE兩點(diǎn),則矩形ABCD的面積為______

【答案】16

【解析】分析:過(guò)EEFABF,由三角形中位線定理可得AD=2EF,設(shè)點(diǎn)D的橫坐標(biāo)為m,D點(diǎn)坐標(biāo)為(m,),得出AD=,即可得出EF=,根據(jù)圖象上的坐標(biāo)特征得出E的橫坐標(biāo)為2m,繼而得出AB=2m,然后根據(jù)矩形的面積公式即可求得.

詳解:過(guò)EEFABF,

∵點(diǎn)E是矩形ABCD對(duì)角線的交點(diǎn),

AE=CE,

EFABC的中位線,

AD=2EF,

設(shè)點(diǎn)D的橫坐標(biāo)為m,且點(diǎn)D在反比例函數(shù)y=(x>0)上,

D點(diǎn)坐標(biāo)為(m,),

AD=

EF=,

E(2m,),

AF=m,

AB=2m,

∴矩形ABCD的面積=2m=16,

故答案為16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形 ABCDEF的中心與坐標(biāo)原點(diǎn)O重合,其中A(-2,0).將六邊形 ABCDEF繞原點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)2018次,每次旋轉(zhuǎn)60°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)是( ).

A. (1,) B. (,1) C. (1,) D. (-1,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)欲購(gòu)進(jìn)果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進(jìn)價(jià)和售價(jià)如下表所示。設(shè)購(gòu)進(jìn)果汁飲料x箱(x為正整數(shù)),且所購(gòu)進(jìn)的兩種飲料能全部賣(mài)出,獲得的總利潤(rùn)為W元(注:總利潤(rùn)=總售價(jià)-總進(jìn)價(jià))。

1)設(shè)商場(chǎng)購(gòu)進(jìn)碳酸飲料y箱,直接寫(xiě)出yx的函數(shù)解析式;

2)求總利潤(rùn)w關(guān)于x的函數(shù)解析式;

3)如果購(gòu)進(jìn)兩種飲料的總費(fèi)用不超過(guò)2100元,那么該商場(chǎng)如何進(jìn)貨才能獲利最多?并求出最大利潤(rùn)。

飲料

果汁飲料

碳酸飲料

進(jìn)價(jià)(元/箱)

40

25

售價(jià)(元/箱)

52

32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b是有理數(shù),且a,b異號(hào),試比較|a+b|,|a﹣b|,|a|+|b|的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是第一象限內(nèi)橫坐標(biāo)為的一個(gè)定點(diǎn),AC⊥x軸于點(diǎn)M,交直線y=﹣x于點(diǎn)N.若點(diǎn)P是線段ON上的一個(gè)動(dòng)點(diǎn),∠APB=30°,BA⊥PA,則點(diǎn)P在線段ON上運(yùn)動(dòng)時(shí),A點(diǎn)不變,B點(diǎn)隨之運(yùn)動(dòng).求當(dāng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)N時(shí),點(diǎn)B運(yùn)動(dòng)的路徑長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件個(gè)數(shù):

每人加工零件個(gè)數(shù)

540

450

300

240

210

120

人數(shù)

1

1

2

6

3

2

(1)寫(xiě)出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).

(2)假如生產(chǎn)部負(fù)責(zé)人把每位工人的月加工零件個(gè)數(shù)定為260,你認(rèn)為這個(gè)定額是否合理?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)打算找印刷公司設(shè)計(jì)一款新年賀卡并印刷.如圖1是甲印刷公司設(shè)計(jì)與印刷卡片計(jì)價(jià)方式的說(shuō)明(包含設(shè)計(jì)費(fèi)與印刷費(fèi)),乙公司的收費(fèi)與印刷卡片數(shù)量的關(guān)系如圖2所示.

1)分別寫(xiě)出甲乙兩公司的收費(fèi)y(元)與印刷數(shù)量x之間的關(guān)系式.

2)如果你是小強(qiáng),你會(huì)選擇哪家公司?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案