【題目】兩個工程隊共同參與一項筑路工程,若先由甲、乙隊合作天,剩下的工程再由乙隊單獨做天可以完成,共需施工費810萬元;若由甲、乙合作完成此項工程共需天,共需施工費萬元.

1)求乙隊單獨完成這項工程需多少天?

2)甲、乙兩隊每天的施工費各為多少萬元?

3)若工程預算的總費用不超過萬元,則乙隊最少施工多少天?

【答案】190天;(2)甲隊每天施工費為15萬元,乙隊每天施工費為8萬元;(3)乙隊最少施工30

【解析】

1)乙隊單獨完成這項工程需x天,設根據(jù)“先由甲、乙隊合作天,剩下的工程再由乙隊單獨做天可以完成”列出方程,解之即可;

2)設甲隊每天施工費為m萬元,乙隊每天施工費為n萬元,根據(jù)兩種情況下的總施工費分別為810萬元和828萬元列出方程組,解之即可;

3)求出甲隊單獨施工需要的天數(shù),設乙隊施工a天,甲隊施工b天,則有,再根據(jù)工程預算的總費用不超過萬元列出不等式,代入求解即可得到a的最小值,即最少施工的天數(shù).

解:(1)設乙隊單獨完成這項工程需x天,

由題意可得:

解得:x=90,

經(jīng)檢驗:x=90是原方程的解,

∴乙隊單獨完成這項工程需90天;

2)設甲隊每天施工費為m萬元,乙隊每天施工費為n萬元,由題意得:

,

解得:

∴甲隊每天施工費為15萬元,乙隊每天施工費為8萬元;

3)∵乙隊單獨完成工程需90天,甲、乙合作完成此工程共需36天,

∴甲隊單獨完成這項工程的天數(shù)為:

設乙隊施工a天,甲隊施工b天,由題意得:

,

由①得:,

代入②可解得:a≥50,

∴乙隊最少施工30.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC和△DEF是兩塊可完全重合的三角板,,.在如圖1所示的狀態(tài)下,△DEF固定不動,將△ABC沿直線a向左平移.

(1)當△ABC移到圖2位置時,連解AF、DC,求證:AF=DC;

(2)若EF=8,在上述平移過程中,試猜想點C距點E多遠時,線段AD被直線a垂直平分。并證明你的猜想是正確的。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB于點E,過點C的切線交AB的延長線于點F,連接DF.

(1)求證:DF⊙O的切線;

(2)連接BC,若∠BCF=30°,BF=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是   度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學生的足球運球測試成績的中位數(shù)會落在   等級;

(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù)

從甲、乙兩個部門各隨機抽取20名員工,進行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

成績

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

得出結論:

.估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;

.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學在用描點法畫二次函數(shù)y=x2+bx+c圖像時,由于粗心他算錯了一個y值,列出了下面表格:

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

x

-1

0

1

2

3

y=x2+bx+c

5

3

2

3

6

(1)請你幫他指出這個錯誤的y值,并說明理由;

(2)若點M(m,y1),N(m+4,y2)在二次函數(shù)y=x2+bx+c圖像上,且m>-1,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了體育活動更好的開展,決定購買一批籃球和足球.據(jù)了解:籃球的單價比足球的單價多20元,用1000元購買籃球的個數(shù)與用800元購買足球的個數(shù)相同.

1)籃球、足球的單價各是多少元?

2)若學校打算購買籃球和足球的數(shù)量共100個,且購買的總費用不超過9600元,問最多能購買多少個籃球?

查看答案和解析>>

同步練習冊答案