【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過(guò)程中,△CMN的周長(zhǎng)如何變化?說(shuō)明理由.
【答案】
(1)解:∵M(jìn)N切⊙O于點(diǎn)M,∴∠OMN=90°,∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°,∴∠OMD=∠MNC,又∵∠D=∠C=90°,∴△ODM∽△MCN
(2)解:在Rt△ODM中,DM=x,設(shè)OA=OM=R,∴OD=AD﹣OA=8﹣R,由勾股定理得:(8﹣R)2+x2=R2,
∴64﹣16R+R2+x2=R2,∴R=
(3)解:∵CM=CD﹣DM=8﹣x,OD=8﹣R=8﹣ ,且有△ODM∽△MCN,∴ ,∴代入得到:CN= .
同理 ,∴代入得到:MN= ,∴△CMN的周長(zhǎng)=CM+CN+MN=(8﹣x)+ + =(8﹣x)+(x+8)=16,
在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,△CMN的周長(zhǎng)始終為16,是一個(gè)定值
【解析】(1)根據(jù)切線的性質(zhì)得∠OMN=90°,根據(jù)同角的余角相等得出∠OMD=∠MNC,根據(jù)正方形的性質(zhì)得出∠D=∠C=90°,從而判斷出△ODM∽△MCN;
(2)在Rt△ODM中,DM=x,根據(jù)同圓的半徑相等得出OA=OM=R,根據(jù)線段的和差得出OD=AD﹣OA=8﹣R,根據(jù)勾股定理得出方程(8﹣R)2+x2=R2,變形方程得出R關(guān)于x的函數(shù)關(guān)系式;
(3)CM=CD﹣DM=8﹣x,OD=8﹣R,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出=,代入得出CN,同理得出MN,根據(jù)△CMN的周長(zhǎng)=CM+CN+MN列出代數(shù)式,化簡(jiǎn)合并就知道答案了。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形,以及對(duì)切線的性質(zhì)定理的理解,了解切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),為直線上點(diǎn),過(guò)點(diǎn)作射線,,將一直角三角尺()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方.
(1)若將圖(1)中的三角尺繞點(diǎn)以每秒的速度,沿順時(shí)針?lè)较蛐D(zhuǎn)秒,當(dāng)恰好平分時(shí),如圖(2).
①求值;
②試說(shuō)明此時(shí)平分;
(2)將圖(1)中的三角尺繞點(diǎn)順時(shí)針旋轉(zhuǎn),設(shè),, 當(dāng)在內(nèi)部時(shí),試求與的數(shù)量關(guān)系;
(3)若將圖(1)中的三角尺繞點(diǎn)以每秒的速度沿順時(shí)針?lè)较蛐D(zhuǎn)的同時(shí),射線也繞點(diǎn)以每秒的速度沿順時(shí)針?lè)较蛐D(zhuǎn),如圖(3),那么經(jīng)過(guò)多長(zhǎng)時(shí)間,射線第一次平分?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,面積為1的正方形ABCD中,M,N分別為AD、BC的中點(diǎn),將C點(diǎn)折至MN上,落在P點(diǎn)的位置,折痕為BQ,連接PQ.以PQ為邊長(zhǎng)的正方形的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某河堤的橫斷面是梯形ABCD,BC∥AD,BE⊥AD于點(diǎn)E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】擲一枚質(zhì)地均勻的骰子,看落地后朝上的面的點(diǎn)數(shù).
(1)會(huì)出現(xiàn)哪些可能的結(jié)果?
(2)擲出的點(diǎn)數(shù)為1與擲出的點(diǎn)數(shù)為2的頻率相同嗎?擲出的點(diǎn)數(shù)為1與擲出的點(diǎn)數(shù)為3的頻率相同嗎?
(3)每種結(jié)果出現(xiàn)的頻率相同嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,現(xiàn)將正方形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)A的對(duì)應(yīng)的A′落在直線y=x上時(shí),點(diǎn)A′的對(duì)應(yīng)坐標(biāo)為;點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為;
(2)旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N,當(dāng)A點(diǎn)第一次落在直線y=x上時(shí),停止旋轉(zhuǎn).
①如圖2,在正方形OABC旋轉(zhuǎn)過(guò)程中,線段AM,MN,NC三者滿足什么樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)AC∥MN時(shí),求△MBN內(nèi)切圓的半徑(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去.若用有序?qū)崝?shù)對(duì)(,)表示第排、從左到右第個(gè)數(shù),如(3,2)表示實(shí)數(shù)5.
(1)圖中(7,3)位置上的數(shù) ;數(shù)據(jù)45對(duì)應(yīng)的有序?qū)崝?shù)對(duì)是 .
(2)第2n行的最后一個(gè)數(shù)為 ,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
第一個(gè)等式:
第二個(gè)等式:
第三個(gè)等式:
第四個(gè)等式:
則式子__________________;
用含n的代數(shù)式表示第n個(gè)等式: ____________________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線AB上的一點(diǎn),CD⊥AB于點(diǎn)O,PO⊥OE于點(diǎn)O,OM平分∠COE,點(diǎn)F在OE的反向延長(zhǎng)線上.
(1)當(dāng)OP在∠BOC內(nèi),OE在∠BOD內(nèi)時(shí),如圖①所示,直接寫出∠POM和∠COF之間的數(shù)量關(guān)系;
(2)當(dāng)OP在∠AOC內(nèi)且OE在∠BOC內(nèi)時(shí),如圖②所示,試問(wèn)(1)中∠POM和∠COF之間的數(shù)量關(guān)系是否發(fā)生變化?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com