【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線ABy軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)AOC的面積;

(3)求不等式kx+b-<0的解集(直接寫(xiě)出答案).

【答案】(1)反比例函數(shù)關(guān)系式:;一次函數(shù)關(guān)系式:y=2x+2;(2) 3;(3)x<-20<x<1.

【解析】

(1)由B點(diǎn)在反比例函數(shù)y=上,可求出m,再由A點(diǎn)在函數(shù)圖象上,由待定系數(shù)法求出函數(shù)解析式;

(2)由上問(wèn)求出的函數(shù)解析式聯(lián)立方程求出A,B,C三點(diǎn)的坐標(biāo),從而求出△AOC的面積;

(3)由圖象觀察函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,對(duì)應(yīng)的x的范圍.

(1)∵B(1,4)在反比例函數(shù)y=上,

∴m=4,

又∵A(n,-2)在反比例函數(shù)y=的圖象上,

∴n=-2,

又∵A(-2,-2),B(1,4)是一次函數(shù)y=kx+b的上的點(diǎn),聯(lián)立方程組解得,

k=2,b=2,

y,y=2x+2;

(2)過(guò)點(diǎn)AAD⊥CD,

∵一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn)為A,B,聯(lián)立方程組解得,

A(-2,-2),B(1,4),C(0,2),

∴AD=2,CO=2,

∴△AOC的面積為:S=ADCO=×2×2=2;

(3)由圖象知:當(dāng)0<x<1-2<x<0時(shí)函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,

∴不等式kx+b-<0的解集為:0<x<1x<-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC60cm,∠A60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是ts0t≤15).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DEEF

1)求證:四邊形AEFD是平行四邊形;

2)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生課外閱讀,開(kāi)闊視野,某校開(kāi)展了書(shū)香校園,從我做起的主題活動(dòng),學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻率分布表和頻率直方圖的一部分如下:

請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:

(1)頻數(shù)分布表中的a____________,b____________;

(2)將頻數(shù)直方圖補(bǔ)充完整;

(3)學(xué)校將每周課外閱讀時(shí)間在6小時(shí)以上的學(xué)生評(píng)為閱讀之星,請(qǐng)你估計(jì)該校2 000名學(xué)生中評(píng)為閱讀之星的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩車(chē)在某時(shí)段速度隨時(shí)間變化的圖象,下列結(jié)論錯(cuò)誤的是如圖是甲、乙兩車(chē)在某時(shí)段速度隨時(shí)間變化的圖象,下列結(jié)論錯(cuò)誤的是( 。

A. 兩車(chē)到第3秒時(shí)行駛的路程相等B. 48秒內(nèi)甲的速度都大于乙的速度

C. 乙前4秒行駛的路程為48D. 08秒內(nèi)甲的速度每秒增加4/

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,三角形是三角形經(jīng)過(guò)平移得到的圖形,設(shè)點(diǎn)是三角形中的任意一點(diǎn),其平移后的對(duì)應(yīng)點(diǎn)為.

請(qǐng)寫(xiě)出三角形平移到三角形的過(guò)程;

分別寫(xiě)出點(diǎn)的坐標(biāo);

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,點(diǎn)DE分別在邊AB、AC上,點(diǎn)FCD上.

1)若∠AED=ACB, DEF= B,求證:EF//AB;

2)若DE、F分別是ABAC、CD的中點(diǎn),連接BF,若四邊形 BDEF的面積為6,試求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天,小明在玩紙片拼圖游戲時(shí),發(fā)現(xiàn)利用圖①中的三種材料各若干,可以拼出一些長(zhǎng)方形來(lái)解釋某些等式,比如圖②可以解釋為等式:.

(1)則圖③可以解釋為等式: .

(2)在虛線框中用圖①中的基本圖形若干塊(每種至少用一次)拼成一個(gè)長(zhǎng)方形,使拼出的長(zhǎng)方形面積為,并請(qǐng)?jiān)趫D中標(biāo)出這個(gè)長(zhǎng)方形的長(zhǎng)和寬.

(3)如圖④,大正方形的邊長(zhǎng)為,小正方形的邊長(zhǎng)為,若用、表示四個(gè)長(zhǎng)方形的兩邊長(zhǎng)(),觀察圖案,指出以下關(guān)系式:();();(); ().其中正確的關(guān)系式的個(gè)數(shù)有 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.

小麗:如果以10/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.

小強(qiáng):如果以13/千克的價(jià)格銷(xiāo)售,那么每天可售出240千克.

小紅:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,每天銷(xiāo)售200千克以上.

(1)求每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)達(dá)到1040元,那么銷(xiāo)售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,C=90,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始,沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)D從點(diǎn)A開(kāi)始,沿邊AB向點(diǎn)B以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且恰好能始終保持連結(jié)兩動(dòng)點(diǎn)的直線PDAC,動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始,沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連結(jié)PQ.點(diǎn)P,D,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另兩個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t0).

(1)當(dāng)t為何值時(shí),四邊形BQPD的面積為△ABC面積的?

(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說(shuō)明理由;

(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由,并探究如何改變點(diǎn)Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度。

查看答案和解析>>

同步練習(xí)冊(cè)答案