【題目】如圖,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以2 cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以4 cm/s的速度移動,如果點(diǎn)P、Q分別從點(diǎn)A、B同時出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說明理由.
【答案】經(jīng)過2或0.8秒鐘△PBQ與△ABC相似.
【解析】試題分析:首先設(shè)經(jīng)x秒鐘△PBQ與△ABC相似,由題意可得AP=2xcm,BQ=4xcm,BP=AB﹣AP=(8﹣2x)cm,又由∠B是公共角,分別從 與 分析,即可求得答案.
試題解析:設(shè)經(jīng)x秒鐘△PBQ與△ABC相似,
則AP=2xcm,BQ=4xcm,
∵AB=8cm,BC=16cm,
∴BP=AB﹣AP=(8﹣2x)cm,
∵∠B是公共角,
∵①當(dāng) ,即時,△PBQ∽△ABC,解得:x=2;
②當(dāng),即時,△QBP∽△ABC,解得:x=0.8,∴經(jīng)2或0.8秒鐘△PBQ與△ABC相似.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn)、,且與直線交于點(diǎn).
(1)若是線段上的點(diǎn),且的面積為,求直線的函數(shù)表達(dá)式.
()在()的條件下,設(shè)是射線上的點(diǎn),在平面內(nèi)是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y1=-x與反比例函數(shù)y2=的圖象經(jīng)過A(-2,1)點(diǎn),求:
(1)反比例函數(shù)的解析式.
(2)正比例與反比例函數(shù)另一個交點(diǎn)B的坐標(biāo).
(3)當(dāng)x在什么范圍,y1=y2,當(dāng)x在什么范圍,y1<y2,當(dāng)x在什么范圍,y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗與探究:
()由圖觀察易知關(guān)于直線的對稱點(diǎn)的坐標(biāo)為,請在圖中分別標(biāo)明、關(guān)于直線的對稱點(diǎn)、的位置,并寫出他們的坐標(biāo):__________、__________.
歸納與發(fā)現(xiàn):
()結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對稱點(diǎn)的坐標(biāo)為__________(不必證明).
運(yùn)用與拓廣:
()已知兩點(diǎn)、,試在直線上確定一點(diǎn),使點(diǎn)到、兩點(diǎn)的距離之和最小,并求出點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個半徑為18 cm的圓,從中心挖去一個正方形,當(dāng)挖去的正方形的邊長由小變大時,剩下部分的面積也隨之發(fā)生變化.
(1)若挖去的正方形邊長為x(cm),剩下部分的面積為y(cm2),則y與x之間的關(guān)系式是什么?
(2)當(dāng)挖去的正方形的邊長由1 cm變化到9 cm時,剩下部分的面積由____變化到____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若,請你利用這個圖形解決下列問題:
(1)試說明;
(2)如果大正方形的面積是10,小正方形的面積是2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答:(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
(2)閱讀下面的內(nèi)容,并解決后面的問題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A在四邊形BCDE的外部時,記∠AEB為∠1,∠ADC為∠2,則∠A、∠1與∠2的數(shù)量關(guān)系,結(jié)論正確的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某教研部門為了了解在校初中生閱讀教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
某校初中生閱讀教科書情況統(tǒng)計圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | b |
一般 | 57 | 0.285 |
不重視 | c | 0.36 |
說不清楚 | 9 | 0.045 |
(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計圖;
(2)若該校共有初中生2500名,請估計該校“重視閱讀教科書”的初中人數(shù);
(3)①根據(jù)上面的統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀教科書的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com