【題目】解下列方程.

12x2)﹣34x1)=91x);

2;

3;

4;

【答案】1x=﹣10;(2x=﹣1;(3x=﹣1.5;(4x=﹣

【解析】

1)方程去括號,移項合并,把x系數(shù)化為1,即可求出解;

2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解;

3)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解;

4)方程整理后,去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.

解:(1)去括號得:2x412x+399x,

移項合并得:﹣x10

解得:x=﹣10;

2)去分母得:4x25x236x12,

移項合并得:5x=﹣5,

解得:x=﹣1;

3)去分母得:3x5x116+4x8,

移項合并得:﹣6x9,

解得:x=﹣1.5;

4)方程整理得:0.75,即15+x203x0.75,

移項合并得:﹣2x5.75,

解得:x=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

學(xué)校給七年級學(xué)生組織知識競賽,共設(shè)20道題,各題的分值相同,每題必答.下表記錄了5名學(xué)生的得分情況

參賽者

答對題數(shù)

答錯題數(shù)

得分

小明

10

10

40

小紅

19

1

94

小剛

20

0

100

小強

18

2

88

小麗

14

6

64

(1)參賽者小芳得76分,她答對了幾道題?

(2)參賽者小花說她得了83分,你認為可能嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)參加1 000米比賽,由于參賽選手較多,將選手隨機分A、B、C三組進行比賽

1)甲同學(xué)恰好在A組的概率是________;

2求甲、乙兩人至少有一人在B組的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰ABC中,∠BAC=120°,AB=AC=6,點D為邊BC上一動點.將ABD沿著AD對折到AB′D.若BB′D為直角三角形,則BD=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實“兩點確定一條直線”來解釋的有( )

①用兩顆釘子就可以把木條固定在墻上

②把筆尖看成一個點,當這個點運動時便得到一條線;

③把彎曲的公路改直,就能縮短路程;

④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.

1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)

2)求線段的長度;

3)若點是線段的中點,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB、CD 是圓O 的兩條直徑,且∠AOD =α0° < α < 90°),點P是扇形AOD內(nèi)任意一點.點PAB、CD所在直線依次輪流作為對稱軸翻折,將點P關(guān)于AB對稱的點記為點P1 ,點P1關(guān)CD 對稱的點記為點P2,點 P2 關(guān)于AB 對稱的點記為點P3,….

1)根據(jù)所給圖中點P 的位置,分別畫出點 P 1P 1;(不寫作圖步驟,但要保留作圖痕跡)

2)分別聯(lián)結(jié)OP、OP1、OP2,那么線段OP、OP1、OP2 之間的數(shù)量關(guān)系是:OP OP1 OP2(填空,不要求寫出過程);

3)由(1)、(2)可知,點 P 繞點O旋轉(zhuǎn)可以到達點P2的位置,如果 α=60°,OP= a,求線段 OP順時針旋轉(zhuǎn)到OP2 過程中掃過的面積;

4)在 α 取某些特定值的時候,如果按照這樣的方式翻折,總能得到一點Pn與點P 重合, 求當n =12,點 P12 與點P 第一次重合時 α 的值.(直接寫出結(jié)果,不要求寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖O為直線AB上一點,∠AOC50°,OD平分∠AOC,∠DOE90°

1)求∠BOD的度數(shù);

2)試判斷OE是否平分∠BOC,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案