某人在做擲硬幣試驗(yàn)時(shí),投擲次,正面朝上有次(即正面朝上的頻率),則下列說法中,正確的是( )
A.一定等于 B.一定不等于
C.多投一次,更接近 D.投擲次數(shù)逐漸增加,穩(wěn)定在附近
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒().
(1)在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得,若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
給出三個(gè)整式a2,b2和2ab.
(1)當(dāng)a=3,b=4時(shí),求a2+b2+2ab的值;
(2)在上面的三個(gè)整式中任意選擇兩個(gè)整式進(jìn)行加法或減法運(yùn)算,使所得的多項(xiàng)式能夠因式分解.請寫出你所選的式子及因式分解的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在菱形中,對角線、相交于點(diǎn)O,E為BC的中點(diǎn),則下列式子中,一定成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD的對角線AC和BD相交于點(diǎn)O,過點(diǎn)O的直線分別交AD和BC于點(diǎn)E、F,AB=2,BC=3,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連結(jié)AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.
求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=6,BC=8,∠BAC= 100°,AB的中垂線交BC于D,AC的中垂線交BC與E,則△ADE的周長等于 ____.∠DAE= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖3,線段,;
請按下列步驟畫圖:(用圓規(guī)和直尺畫圖,不寫畫法、保留作圖痕跡,以答卷上的圖為準(zhǔn).)
(1)畫線段BC,使得BC= ;
(2)在直線BC外任取一點(diǎn)A,畫直線AB和射線AC.
(3)試估計(jì)你在(1)題所畫的圖形中∠ABC與∠BAC 的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com