【題目】若(x﹣1)0=1,則( )
A.x≥1
B.x≤1
C.x≠1
D.x≠0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì))這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,(即出廠價(jià)=基礎(chǔ)價(jià)+浮動(dòng)價(jià))其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價(jià)-成本價(jià))
薄板的邊長(cm) | 20 | 30 |
出廠價(jià)(元/張) | 50 | 70 |
(1)求一張薄板的出廠價(jià)y與邊長x之間滿足的函數(shù)關(guān)系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關(guān)系式;
(3)若一張薄板的利潤是34元,且成本最低,此時(shí)薄板的邊長為多少?當(dāng)薄板的邊長為多少時(shí),所獲利潤最大,求出這個(gè)最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2,),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( 。
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式由左邊向右邊的變形中,屬于因式分解的是 ( )
A.x2+5x-1=x(x+5)-1B.x2-4+3x=(x+2)(x-2)+3x
C.(x+2)(x-2)=x2-4D.x2-9=(x+3)(x-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等邊三角形ABC中.D是AB邊上的動(dòng)點(diǎn),以CD為一邊,向上作等邊三角形EDC.連接AE.
(1)求證:△DBC≌△EAC
(2)試說明AE∥BC的理由.
(3)如圖②,當(dāng)圖①中動(dòng)點(diǎn)D運(yùn)動(dòng)到邊BA的延長線上時(shí),所作仍為等邊三角形,猜想是否仍有AE∥BC?若成立請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(2k+1)x+4(k-0.5)=0
(1)判斷方程根的情況;
(2)k為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,并求出此時(shí)方程的根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com