【題目】如圖,已知一張紙片ABCD,∠B>90°,點E是AB的中點,點G是BC上的一個動點,沿BG將紙片折疊,使點B落在紙片上的點F處,連接AF,則下列各角中與∠BEG不一定相等的是( )
A.∠FEG
B.∠EAF
C.∠AEF
D.∠EFA
【答案】C
【解析】解:由折疊的性質(zhì)可知:∠BEG=∠FEG,BE=EF, 又點E是AB的中點,
∴AE=BE=EF,∠AFE=∠EAF,
又2∠BEG=∠AFE+∠EAF,
∴∠BEG=∠EAF=∠EFA,
∴∠AEF不一定與∠BEG相等,
故選C.
【考點精析】本題主要考查了平行四邊形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形OABC中,點B的坐標(biāo)是(4,4),點E、F分別在邊BC、BA上,OE=2,若∠EOF=45°,則F點的縱坐標(biāo)是( )
A. B. 1 C. D. -1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣ x+2(a≠0)的圖像與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).
(1)求拋物線與直線AC的函數(shù)解析式;
(2)若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系;
(3)若點E為拋物線上任意一點,點F為x軸上任意一點,當(dāng)以A、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出滿足條件的所有點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商廈用8萬元購進紀(jì)念運動休閑衫,面市后供不應(yīng)求,商廈又用17.6萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進數(shù)量的2倍,但單價貴了4元,商廈銷售這種運動休閑衫時每件定價都是58元,最后剩下的150件按八折銷售,很快售完.
(1)商廈第一批和第二批各購進休閑衫多少件?
(2)請問在這兩筆生意中,商廈共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分校為了調(diào)查初三年級學(xué)生每周的課外活動時間,隨機抽查了50名初三學(xué)生,對其平均毎周參加課外活動的時間進行了調(diào)查.由調(diào)查結(jié)果繪制了頻數(shù)分布直方圖,根據(jù)圖中信息回答下列問題:
(1)求m的值;
(2)計算50名學(xué)生的課外活動時間的平均數(shù)(每組時間用其組中值表示),對初三年級全體學(xué)生平均每周的課外活動吋問做個推斷;
(3)從參加課外活動時間在6~10小時的5名學(xué)生中隨機選取2人,請你用列表法,求其中至少有1人課外活動時間在8~10小時的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七班派出名同學(xué)參加數(shù)學(xué)競賽,老師以分為基準(zhǔn),把分?jǐn)?shù)超過分的部分記為正數(shù),不足部分記為負(fù)數(shù).評分記錄如下:,,,,,,,,,,,.
這名同學(xué)中最高分和最低分各是多少?
超過基準(zhǔn)分的和低于基準(zhǔn)分的各有多少人?
這十二名同學(xué)的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y= (k>0,x>0)圖像上的兩點,BC∥x軸,交y軸于點C,動點P縱坐標(biāo)原點O出發(fā),沿O→A→B→C勻速運動,終點為C,過點P作PM⊥x軸,PN⊥y軸,垂足分別為M,N.設(shè)四邊形OMPN的面積為S,點P運動的時間為t,則S關(guān)于t的函數(shù)圖像大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A、B、C,完成系列問題:
(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.
(2)在數(shù)軸上找到點E,使點E到A、C兩點的距離相等.并在數(shù)軸上標(biāo)出點E表示的數(shù).
(3)在數(shù)軸上有一點F,滿足點F到點A與點F到點C的距離和是9,則點F表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求1+2+22+23+…+22016的值,可設(shè)S=1+2+22+23+…+22016 , 于是2S=2+22+23+…+22017 , 因此2S﹣S=22017﹣1,所以S=22017﹣1.我們把這種求和方法叫錯位相減法.仿照上述的思路方法,計算出1+5+52+53+…+52016的值為( )
A.52017﹣1
B.52016﹣1
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com