【題目】如圖,△ABC中,∠ACB=90°,tanA=,點(diǎn)D是邊AC上一點(diǎn),連接BD,并將△BCD沿BD折疊,使點(diǎn)C恰好落在邊AB上的點(diǎn)E處,過點(diǎn)D作DF⊥BD,交AB于點(diǎn)F.
(1)求證:∠ADF=∠EDF;
(2)探究線段AD,AF,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若EF=1,求BC的長(zhǎng).
【答案】(1)證明見解析;(2)AD2=AF·AB,理由見解析;(3)5+2.
【解析】試題解析:(1)根據(jù)題意得∠ADF+∠BDC=∠EDF+∠BDE=90°,由折疊可知,∠BDE=∠BDC.所以∠ADF=∠EDF;
(2)易證△ADF∽△ABD,得AF∶AD=AD∶AB=DF∶DB,得AD2=AF·AB;
(3)設(shè)AE=x,DE=x,由勾股定理可得,AD=DE=x,可證△ADE∽△DFE,得BE=2x2,由(2)知AD2=AF·AB,即3x2=(x-1)×(x+2x2).解得x 的值,即可求BC的值
試題解析:(1)∵DF⊥DB,∴∠BDF=90°.
∴∠ADF+∠BDC=∠EDF+∠BDE=90°
由折疊可知,∠BDE=∠BDC.
∴∠ADF=∠EDF.
(2)AD,AF,AB之間的數(shù)量關(guān)系為AD2=AF·AB,理由如下:
由折疊可知,∠DEF=∠BFD=∠C=90°.
∴∠EDF+∠DFE=∠ABD+∠DFE=90°.
∴∠EDF=∠ABD.
∴∠ADF=∠DBA.
∵∠A=∠A,∴△ADF∽△ABD.
∴AF∶AD=AD∶AB=DF∶DB.
∴AD2=AF·AB.
(3)在Rt△ADE中,tanA=DE∶AE=∶1,則可設(shè)AE=x,DE=x,由勾股定理可得,AD=DE=x.
∵∠ABD=∠EDF,∠AED=∠DEF,
∴△ADE∽△DFE. ∴DE∶EF=BE∶DE,即DE2=EF·EB.
∴(x)2=1×BE,即BE=2x2。
由(2)知AD2=AF·AB,
∴(x)2=(AE-EF)(AE+BE)=(x-1)×(x+2x2).
即3x2=(x-1)×(x+2x2).
解得,x=1+,x=1- (舍).
∴BE=2x2=2(1+)2=5+2.
由折疊可知,BC=BE=5+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌,若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中屬于必然事件的是( 。
A.任意買一張電影票,座位號(hào)是偶數(shù)B.367人中至少有2人的生日相同
C.擲一次骰子,向上的一面是5點(diǎn)D.某射擊運(yùn)動(dòng)員射擊1次,命中靶心
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題3+3+4+4分)如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(,0)和點(diǎn)B(1,),與x軸的另一個(gè)交點(diǎn)為C,
(1)求拋物線的表達(dá)式;(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE
①判斷四邊形OAEB的形狀,并說明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD上的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng),請(qǐng)直接寫出線段BM的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為( )
A. 55° B. 50° C. 45° D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)M(3a﹣9,1+a)是第二象限的點(diǎn),則a的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D是AC的中點(diǎn),延長(zhǎng)BC到E,使CE=CD.
(1)用尺規(guī)作圖的方法,過點(diǎn)D作DM⊥BE,垂足為M(不寫作法,只保留作圖痕跡);
(2)若AB=2,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在操場(chǎng)上活動(dòng)時(shí),小明發(fā)現(xiàn)旗桿的影子與旁邊的樹的影子好像平行,但他不敢確定,那么他可以采取的最好辦法是( )
A. 通過平移的辦法進(jìn)行驗(yàn)證
B. 看看其他同學(xué)是不是這樣認(rèn)為
C. 構(gòu)造并測(cè)量?jī)蓚(gè)同位角,若相等則影子平行
D. 構(gòu)造幾何模型,用已學(xué)知識(shí)證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳老師給42名學(xué)生每人買了一件紀(jì)念品,其中有:每支12元的鋼筆,每把4元的圓規(guī),每?jī)?cè)16元的詞典,共用了216元,則陳老師買了鋼筆支,詞典冊(cè);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com