【題目】如圖1,是一種折疊椅,忽略其支架等的寬度,得到它的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示.若坐板CD平行于地面,前支撐架AB與后支撐架OF分別與CD交于點E,D,ED=25cm,OD=20cm,DF=40cm,ODC=60°,AED=50°.

(1)求兩支架著地點B,F(xiàn)之間的距離;

(2)若A、D兩點所在的直線正好與地面垂直,求椅子的高度.

(結(jié)果取整數(shù),參數(shù)數(shù)據(jù):sin60°=0.87,cos60°=0.5,tan60°=1.73,sin50°=0.77,cos50°=0.64,tan50°=1.19)

【答案】(1)74.08cm;(2)64cm.

【解析】

(1)連接BF,過DDMBF,過EENBFN,于是得到MN=DE=25cm,EN=DM,根據(jù)平行線的性質(zhì)得到∠F=ODE=60°,B=OED=50°,求得EN=DM=20=34.6,MF=20,由三角函數(shù)的定義得到BN=≈29.08,于是得到結(jié)論;

(2)根據(jù)三角函數(shù)的定義即刻得到結(jié)論.

(1)連接BF,過DDMBF,過EENBFN,

MN=DE=25cm,EN=DM,

DEBF,

∴∠F=ODE=60°,B=OED=50°,

DF=40,

EN=DM=20=34.6,MF=20,

BN=≈29.08,

BF=BN+MN+MF=74.08cm,

故兩支架著地點B,F(xiàn)之間的距離為74.08cm;

(2)在RtADE中,AD=DEtan50°=29.75cm,

AM=29.75+20≈64cm,

故椅子的高度是64cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2x軸上,依次進行下去.若點A(,0),B(0,2),則點B2018的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,A、B兩個頂點在軸的上方,C的坐標是(1,0).以點C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是BC,AB, AC的中點,則下列四個判斷中不一定正確的是( )

A. 四邊形AEDF一定是平行四邊形

B. 若∠A=90°,則四邊形AEDF是矩形

C. AD平分∠A,則四邊形AEDF是正方形

D. ADBC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點B的坐標為(6,4).

(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)

(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=﹣2x+b的圖象與反比例函數(shù)y=的圖象交于點A(1,n)、B(﹣2,2).

(1)求k、n、b的值;

(2)若x軸正半軸上有一點M,滿足MAB的面積為12,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b202a﹣b=0;a+b+c0;④點Mx1,y1)、Nx2,y2)在拋物線上,若x1x2﹣1,則y1y2,abc0.其中正確結(jié)論的個數(shù)是( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CDAC30 cm.

(1)如圖2,當∠BAC24°時,CDAB,求支撐臂CD的長;

(2)如圖3,當∠BAC12°時,求AD的長.(結(jié)果保留根號)

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46sin 12°≈0.20)

查看答案和解析>>

同步練習冊答案