【題目】如圖,在平面直角坐標(biāo)系中,OA=AB,∠OAB=90°,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點.若點A的坐標(biāo)為(n,1),則 k的值為______.
【答案】
【解析】
作AE⊥x軸于E,BF⊥x軸于F,過B點作BC⊥y軸于C,交AE于G,則 AG⊥BC,先求得△AOE≌△BAG,得出 AG=OE=n,BG=AE=1,從而求得 B(n+1, 1﹣n),根據(jù) k=n×1=(n+1)(1﹣n)得出方程,解方程即可.
作AE⊥x軸于E,BF⊥x軸于F,過B點作BC⊥y軸于C,交AE于G,
如圖所示:則AG⊥BC,
∵∠OAB=90°,
∴∠OAE+∠BAG=90°,
∵∠OAE+∠AOE=90°,
∴∠AOE=∠GAB,
在△AOE和△BAG中,,
∴△AOE≌△BAG(AAS),
∴OE=AG,AE=BG,
∵點A(n,1),
∴AG=OE=n,BG=AE=1,
∴B(n+1,1﹣n),
∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,
解得:n= (負值舍去),
∴n= ,
∴k=;
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標(biāo)原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1=(x>0)的圖象上,頂點B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則=( )
A.-3 B.3 C. D.-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)()的圖象與x軸交于A(﹣2,0)、B(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.
(1)求該二次函數(shù)的解析式;
(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:
來源: 題型:【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(10,0)、C(0,3),直線與BC相交于點D,拋物線y=ax2+bx經(jīng)過A、D兩點.
(1)求拋物線的解析式;
(2)連接AD,試判斷△OAD的形狀,并說明理由.
(3)若點P是拋物線的對稱軸上的一個動點,對稱軸與OD、x軸分別交于點M、N,問:是否存在點P,使得以點P、O、M為頂點的三角形與△OAD相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④b2﹣4ac>0,其中正確的命題有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=mx2﹣(2m+1)x+m﹣5的圖象與x軸有兩個公共點.
(1)求m的取值范圍;
(2)若m取滿足條件的最小的整數(shù),當(dāng)n≤x≤1時,函數(shù)值y的取值范圍是﹣6≤y≤24,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com