【題目】如圖,在平面直角坐標(biāo)系中,OA=AB,∠OAB=90°,反比例函數(shù)y=x0)的圖象經(jīng)過A,B兩點.若點A的坐標(biāo)為(n,1),則 k的值為______

【答案】

【解析】

AEx軸于EBFx軸于F,過B點作BCy軸于C,交AEG,則 AGBC,先求得AOE≌△BAG,得出 AG=OE=n,BG=AE=1,從而求得 Bn+1 1n),根據(jù) k=n×1=n+1)(1n)得出方程,解方程即可.

AEx軸于E,BFx軸于F,過B點作BCy軸于C,交AEG

如圖所示:則AGBC,

∵∠OAB=90°

∴∠OAE+BAG=90°,

∵∠OAE+AOE=90°

∴∠AOE=GAB,

AOEBAG中,,

∴△AOE≌△BAGAAS),

OE=AGAE=BG,

∵點An,1),

AG=OE=n,BG=AE=1

Bn+1,1n),

k=n×1=n+1)(1n),整理得:n2+n1=0

解得:n= (負值舍去),

n= ,

k=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.

1)該班共有   名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整;

3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°90°的直角三角板,直角頂點O位于坐標(biāo)原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1=x>0)的圖象上,頂點B在函數(shù)y2= x>0)的圖象上,∠ABO=30°,則=

A.-3 B.3 C. D.-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù))的圖象與x軸交于A﹣2,0)、B80)兩點,與y軸交于點B,其對稱軸與x軸交于點D

1)求該二次函數(shù)的解析式;

2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;

3)如圖2,若點Pmn)是該二次函數(shù)圖象上的一個動點(其中m0,n0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是   

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1;

(3)四邊形AA2C2C的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A10,0)、C0,3),直線BC相交于點D,拋物線y=ax2+bx經(jīng)過A、D兩點.

1)求拋物線的解析式;

2)連接AD,試判斷△OAD的形狀,并說明理由.

3)若點P是拋物線的對稱軸上的一個動點,對稱軸與ODx軸分別交于點M、N,問:是否存在點P,使得以點P、O、M為頂點的三角形與△OAD相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c0;②b2a;③方程ax2+bx+c0的兩根分別為﹣31;④b24ac0,其中正確的命題有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點C逆時針旋轉(zhuǎn)60°,得到MNC,連接BM,BM的長是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)ymx2﹣(2m+1x+m5的圖象與x軸有兩個公共點.

1)求m的取值范圍;

2)若m取滿足條件的最小的整數(shù),當(dāng)nx1時,函數(shù)值y的取值范圍是﹣6y24,求n的值.

查看答案和解析>>

同步練習(xí)冊答案