【題目】如圖所示,四邊形ABCD中,AC⊥BD于點O,AO=CO=4,BO=DO=3,點P為線段AC上的一個動點.過點P分別作PM⊥AD于點M,作PN⊥DC于點N. 連接PB,在點P運動過程中,PM+PN+PB的最小值等于_________ .
【答案】7.8
【解析】
在△ADO中,由勾股定理可求得AD=5,由AC⊥BD,AO=CO,可知DO是AC的垂直平分線,由線段垂直平分線的性質(zhì)可知AD=DC;利用面積法可證得PM+PN為定值,當(dāng)PB最短時,PM+PN+PB有最小值,由垂線的性質(zhì)可知當(dāng)點P與點O重合時,OB有最小值.
∵AC⊥BD于點O,AO=CO=4,BO=DO=3,
∴在Rt△AOD中,
AD=,
∵AC⊥BD于點O,AO=CO,
∴CD=AD=5,
如圖所示:連接PD,
∵,
∴,即,
∴PM+PN=4.8,
∴當(dāng)PB最短時,PM+PN+PB有最小值,
∵由垂線段最短可知:當(dāng)BP⊥AC時,PB最短.
∴當(dāng)點P與點O重合時,PM+PN+PB有最小,最小值=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做好開學(xué)準(zhǔn)備,某校共購買了20桶A、B兩種桶裝消毒液,進(jìn)行校園消殺,以備開學(xué).已知A種消毒液300元/桶,每桶可供2 000米2的面積進(jìn)行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進(jìn)行消殺.
(1)設(shè)購買了A種消毒液x桶,購買消毒液的費用為y元,寫出y與x之間的關(guān)系式,并指出自變量x的取值范圍;
(2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級畢業(yè)生統(tǒng)一參加中考實驗操作考試,根據(jù)今年的實際情況,中考實驗操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級學(xué)生,需參加實驗考試.
(1)小明抽到化學(xué)實驗的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(-4,0).
(1)求該二次函數(shù)的表達(dá)式及點C的坐標(biāo);
(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖像上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖像上時,請直接寫出此時S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AB上一點,沿DE將折疊得到,延長EF交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)探求BH與AE數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.
①求證:CE∥BF;
②若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據(jù)圓的對稱性可知OC⊥AB).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場銷售一批襯衫,每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,減少庫存,決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果一件襯衫每降價1元,每天可多售出2件.
(1)若商場每天要盈利1200元,每件應(yīng)降價多少元?
(2)設(shè)每件降價x元,每天盈利y元,每件降價多少元時,商場每天的盈利達(dá)到最大?盈利最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,AB=AC,BC=6,BE為中線,點D為BC邊上一點;BD=2CD,DF⊥BE于點F,EH⊥BC于點H.
(1)CH的長為_____;
(2)求BF·BE的值:
(3)如圖2,連接FC,求證:∠EFC=∠ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com