精英家教網 > 初中數學 > 題目詳情
已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數關系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

【答案】分析:(1)已知拋物線過C(0,-2)點,那么c=-2;根據對稱軸為x=-1,因此-=-1,然后將A點的坐標代入拋物線中,通過聯(lián)立方程組即可得出拋物線的解析式.
(2)本題的關鍵是確定P點的位置,由于A是B點關于拋物線對稱軸的對稱點,因此連接AC與拋物線對稱軸的交點就是P點.可根據A,C的坐標求出AC所在直線的解析式,然后根據得出的一次函數的解析式求出與拋物線對稱軸的交點即可得出P點的坐標.
(3)△PDE的面積=△OAC的面積-△PDC的面積-△ODE的面積-△AEP的面積
△OAC中,已知了A,C的坐標,可求出△OAC的面積.
△PDC中,以CD為底邊,P的橫坐標的絕對值為高,即可表示出△PDC的面積.
△ODE中,可先用m表示出OD的長,然后根據△ODE與△OAC相似,求出OE的長,根據三角形的面積計算公式可用m表示出△ODE的面積.
△PEA中,以AE為底邊(可用OE的長表示出AE),P點的縱坐標的絕對值為高,可表示出△PEA的面積.
由此可表示出△ODE的面積,即可得出關于S,m的函數關系式.然后根據函數的性質求出三角形的最大面積以及對應的m的值.
解答:解:(1)由題意得
解得,
∴此拋物線的解析式為y=x2+x-2.

(2)連接AC、BC.

因為BC的長度一定,
所以△PBC周長最小,就是使PC+PB最。
B點關于對稱軸的對稱點是A點,AC與對稱軸x=-1的交點即為所求的點P.
設直線AC的表達式為y=kx+b,
,
解得,
∴此直線的表達式為y=-x-2,
把x=-1代入得y=-
∴P點的坐標為(-1,-).

(3)S存在最大值,
理由:∵DE∥PC,即DE∥AC.
∴△OED∽△OAC.
,即,
∴OE=3-m,OA=3,AE=m,
∴S=S△OAC-S△OED-S△AEP-S△PCD
=×3×2-×(3-m)×(2-m)-×-×m×1
=-m2+m=-(m-1)2+

∴當m=1時,S最大=
點評:本題著重考查了待定系數法求二次函數解析式、三角形相似等重要知識點;
(3)中無法直接求出三角形的面積時,可用其他圖形的面積經過“和,差”的關系來求出其面積.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經過點(1,0),一條直線y=ax+b,它們的系數之間滿足如下關系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標是
(-1,4)
(-1,4)

(2)若直線y=ax+b經過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:拋物線數學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為數學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年四川省綿陽市南山中學自主招生考試數學試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案