(1)證明:令y=0,則有x
2-(a+b)x+
=0,
∴△=(a+b)
2-c
2,
由于a、b、c分別是△ABC的三邊,
∴a+b>c>0,
∴(a+b)
2>c
2,
∴△>0,
因此拋物線總與x軸有兩個(gè)交點(diǎn).
(2)證明:由題意知:x=
=a,因此a=b.
設(shè)E點(diǎn)的橫坐標(biāo)為m,F(xiàn)點(diǎn)的橫坐標(biāo)為n,
聯(lián)立拋物線和直線y=ax-bc可得:x
2-2ax+
=ax-ac,
即x
2-3ax+
=0,
∴m=
,n=
由題意可知:m=5n;
即3a+
=15a-5
即5a
2-4ac-c
2=0,
解得a=-
(不合題意舍去),a=c,
因此a=b=c,△ABC為等邊三角形;
(3)解:存在過P、Q兩點(diǎn)且與y軸相切的圓,理由如下:
∵△ABC為等邊三角形,設(shè)邊長(zhǎng)為m,則邊上的高為
m,
∴S
△ABC=
m
2=
,即m
2=4,解得m=2,
則a=b=c=2,拋物線解析式為y=x
2-4x+1,
令y=0,得到x
2-4x+1=0,解得x
1=2-
,x
2=2+
,
∴P(2-
,0),Q(2+
,0),PQ=2
,
∵HJ⊥PQ,∴PJ=QJ=
PQ=
,
∵P與Q關(guān)于拋物線的對(duì)稱軸x=2對(duì)稱,且過P和Q的圓與y軸相切于I,
∴HI=2,即圓的半徑為2,則HP=2,
在Rt△PHJ中,根據(jù)勾股定理得:HJ
2=PH
2-PJ
2,
即HJ=
=1,
則圓心H坐標(biāo)為(2,1)或(2,-1).
分析:(1)令y=0,用根的判別式和三角形三邊關(guān)系即可證得;
(2)先根據(jù)拋物線的對(duì)稱軸求出a、b的關(guān)系.然后聯(lián)立拋物線與直線l的解析式,求出E、F的橫坐標(biāo),已知△MNE的面積是△MNF的面積的5倍,根據(jù)等底三角形的面積比等于高的比,由此可得出E的橫坐標(biāo)是F的橫坐標(biāo)的5倍,由此可求出a、c的關(guān)系,由此可求出三角形ABC的形狀為等邊三角形,得證;
(3)由(2)得到三角形ABC為等邊三角形,根據(jù)面積求出等邊三角形的邊長(zhǎng),即可得到三角形ABC的邊長(zhǎng),即得到a=b=c的值,代入確定出拋物線解析式,令解析式中的y=0,求出x的值,即可得到P和Q的橫坐標(biāo),確定出兩點(diǎn)的坐標(biāo),即可求出PQ的長(zhǎng),設(shè)圓H為滿足題意的圓,根據(jù)P與Q關(guān)于對(duì)稱軸對(duì)稱,得到HJ垂直于PQ,根據(jù)垂徑定理得到J為PQ中點(diǎn),即可求出PJ的長(zhǎng),又圓心H在x=2上,且圓H與y軸相切,得到圓心H的橫坐標(biāo)為2,且圓H的半徑為2,即HP=2,在直角三角形HPJ中,根據(jù)勾股定理求出HJ的長(zhǎng),即為圓心H的縱坐標(biāo),寫出圓心H坐標(biāo)即可.
點(diǎn)評(píng):本題考查了二次函數(shù)與一元二次方程的關(guān)系、韋達(dá)定理、函數(shù)圖象交點(diǎn)、垂徑定理,直線與圓相切的性質(zhì)等知識(shí)點(diǎn);本題有一定的難度,綜合性較強(qiáng),常綜合多個(gè)考點(diǎn)和數(shù)學(xué)思想方法,因而解答時(shí)需“分解題意”,即將一個(gè)大問題分解為一個(gè)一個(gè)小問題,從而解決問題.本題第三問根據(jù)等邊三角形ABC的面積求出邊長(zhǎng),從而得到a,b及c的值,確定出拋物線的解析式是解題的突破點(diǎn).