【題目】若能分解成兩個(gè)一次因式的積,則整數(shù)k=_________.
【答案】
【解析】
根據(jù)題意設(shè)多項(xiàng)式可以分解為:(x+ay+c)(2x+by+d),則2c+d=k,根據(jù)cd=6,求出所有符合條件的c、d的值,然后再代入ad+bc=0求出a、b的值,與2a+b=1聯(lián)立求出a、b的值,a、b是整數(shù)則符合,否則不符合,最后把符合條件的值代入k進(jìn)行計(jì)算即可.
解:設(shè)能分解成:(x+ay+c)(2x+by+d),
即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,
∴cd=6,
∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),
∴①c=1,d=6時(shí),ad+bc=6a+b=0,與2a+b=1聯(lián)立求解得,
或c=6,d=1時(shí),ad+bc=a+6b=0,與2a+b=1聯(lián)立求解得,
②c=2,d=3時(shí),ad+bc=3a+2b=0,與2a+b=1聯(lián)立求解得,
或c=3,d=2時(shí),ad+bc=2a+3b=0,與2a+b=1聯(lián)立求解得,
③c=-2,d=-3時(shí),ad+bc=-3a-2b=0,與2a+b=1聯(lián)立求解得,
或c=-3,d=-2,ad+bc=-2a-3b=0,與2a+b=1聯(lián)立求解得,
④c=-1,d=-6時(shí),ad+bc=-6a-b=0,與2a+b=1聯(lián)立求解得,
或c=-6,d=-1時(shí),ad+bc=-a-6b=0,與2a+b=1聯(lián)立求解得,
∴c=2,d=3時(shí),c=-2,d=-3時(shí),符合,
∴k=2c+d=2×2+3=7,k=2c+d=2×(-2)+(-3)=-7,
∴整數(shù)k的值是7,-7.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E是AD邊上的點(diǎn),連接BE.
(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長(zhǎng);
(2)如圖2,點(diǎn)F是平行四邊形外一點(diǎn),FB=CD.連接BF、CF,CF與BE相交于點(diǎn)G,若∠FBE+∠ABC=180°,點(diǎn)G是CF的中點(diǎn),求證:2BG+ED=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
(1)求該二次函數(shù)的表達(dá)式;
(2)該二次函數(shù)圖像關(guān)于x軸對(duì)稱的圖像所對(duì)應(yīng)的函數(shù)表達(dá)式 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】因抖音等新媒體的傳播,西安已成為最著名的網(wǎng)紅旅游城市之一,2018年“十一”黃金周期間,接待游客已達(dá)萬(wàn)人次,古城西安美食無(wú)數(shù),一家特色小面店希望在長(zhǎng)假期間獲得較好的收益,經(jīng)測(cè)算知,該小面的成本價(jià)為每碗元,借鑒以往經(jīng)驗(yàn);若每碗小面賣元,平均每天能夠銷售碗,若降價(jià)銷售,毎降低元,則平均每天能夠多銷售碗.為了維護(hù)城市形象,店家規(guī)定每碗小面的售價(jià)不得超過(guò)元,則當(dāng)每碗小面的售價(jià)定為多少元時(shí),店家才能實(shí)現(xiàn)每天盈利元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當(dāng)90°<α<180°時(shí),作A′D⊥AC,垂足為D,A′D與B′C交于點(diǎn)E.
(1)如圖1,當(dāng)∠CA′D=15°時(shí),作∠A′EC的平分線EF交BC于點(diǎn)F.
①寫出旋轉(zhuǎn)角α的度數(shù);
②求證:EA′+EC=EF;
(2)如圖2,在(1)的條件下,設(shè)P是直線A′D上的一個(gè)動(dòng)點(diǎn),連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將小正方形AEFG繞大正方形ABCD的頂點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度α(其中0°≤α≤90°),連接BG、DE相交于點(diǎn)O,再連接AO、BE、DG.王凱同學(xué)在探究該圖形的變化時(shí),提出了四個(gè)結(jié)論:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中結(jié)論正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市有甲、乙兩種商品,若買1件甲商品和2件乙商品,共需80元;若買2件甲商品和3件乙商品,共需135元.
(1)求甲、乙兩種商品每件售價(jià)分別是多少元;
(2)甲商品每件的成本是20元,根據(jù)市場(chǎng)調(diào)查:若按(1)中求出的單價(jià)銷售,該超市每天銷售甲商品100件;若銷售單價(jià)每上漲1元,甲商品每天的銷售量就減少5件.寫出甲商品每天的銷售利潤(rùn)y(元)與銷售單價(jià)(x)元之間的函數(shù)關(guān)系,并求每件售價(jià)為多少元時(shí),甲商品每天的銷售利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com