【題目】在平行四邊形ABCD中,點(diǎn)EAD邊上的點(diǎn),連接BE

1)如圖1,若BE平分∠ABC,BC8ED3,求平行四邊形ABCD的周長;

2)如圖2,點(diǎn)F是平行四邊形外一點(diǎn),FBCD.連接BF、CFCFBE相交于點(diǎn)G,若∠FBE+ABC180°,點(diǎn)GCF的中點(diǎn),求證:2BG+EDBC

【答案】126;(2)見解析

【解析】

1)由平行四邊形的性質(zhì)得出ADBC8,ABCD,ADBC,由平行線的性質(zhì)得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則ABAE,AEADEDBCED5,得出AB5,即可得出結(jié)果;

2)連接CE,過點(diǎn)CCKBFBEK,則∠FBG=∠CKG,由點(diǎn)GCF的中點(diǎn),得出FGCG,由AAS證得FBG≌△CKG,得出BGKGCKBFCD,由平行四邊形的性質(zhì)得出∠ABC=∠D,∠BAE+D180°,ABCDCKADBC,由平行線的性質(zhì)得出∠DEC=∠BCE,∠AEB=∠KBC,易證∠EKC=∠D,∠CKB=∠BAE,由AAS證得AEB≌△KBC,得出BCBE,則∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS證得KEC≌△DEC,得出KEED,即可得出結(jié)論.

1)∵四邊形ABCD是平行四邊形,

ADBC8,ABCD,ADBC,

∴∠AEB=∠CBE

BE平分∠ABC,

∴∠ABE=∠CBE

∴∠ABE=∠AEB,

ABAE

AEADEDBCED835,

AB5,

∴平行四邊形ABCD的周長=2AB+2BC2×5+2×826

2)連接CE,過點(diǎn)CCKBFBEK,如圖2所示:

則∠FBG=∠CKG,

∵點(diǎn)GCF的中點(diǎn),

FGCG,

FBGCKG中,

,

∴△FBG≌△CKGAAS),

BGKG,CKBFCD,

∵四邊形ABCD是平行四邊形,

∴∠ABC=∠D,∠BAE+D180°,ABCDCK,ADBC,

∴∠DEC=∠BCE,∠AEB=∠KBC,

∵∠FBE+ABC180°,

∴∠FBE+D180°,

∴∠CKB+D180°,

∴∠EKC=∠D,

∵∠BAE+D180°,

∴∠CKB=∠BAE,

AEBKBC中,

∴△AEB≌△KBCAAS),

BCEB,

∴∠KEC=∠BCE,

∴∠KEC=∠DEC

KECDEC中,

,

∴△KEC≌△DECAAS),

KEED,

BEBG+KG+KE2BG+ED

2BG+EDBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為紀(jì)念建國70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將AB,C這三個(gè)字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,九(1)班班長先從中隨機(jī)抽取一張卡片,放回后洗勻,再由九(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出九(1)班和九(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家家電下鄉(xiāng)政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).

1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請(qǐng)寫出yx之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?

3)每臺(tái)冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在使用筆記本電腦時(shí),為了散熱,他將電腦放在散熱架CAD上,忽略散熱架和電腦的厚度,側(cè)面示意圖如圖1所示,已知電腦顯示屏OB與底板OA的夾角為135°,OB=OA=25cmOEAD于點(diǎn)E,OE=12.5cm.

1)求∠OAE的度數(shù);

2)若保持顯示屏OB與底板OA135°夾角不變,將電腦平放在桌面上如圖2中的所示,則顯示屏頂部比原來頂部B大約下降了多少?(參考數(shù)據(jù):結(jié)果精確到0.1cm.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中yx之間的函數(shù)關(guān)系.已知兩車相遇時(shí)快車比慢車多行駛60千米.若快車從甲地到達(dá)乙地所需時(shí)間為t時(shí),則此時(shí)慢車與甲地相距_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解九年級(jí)學(xué)生對(duì)八禮四儀的掌握情況,對(duì)該年級(jí)的500名同學(xué)進(jìn)行問卷測試,并隨機(jī)抽取了10名同學(xué)的問卷,統(tǒng)計(jì)成績?nèi)缦拢?/span>

得分

10

9

8

7

6

人數(shù)

3

3

2

1

1

1)計(jì)算這10名同學(xué)這次測試的平均得分;

2)如果得分不少于9分的定義為優(yōu)秀,估計(jì)這 500名學(xué)生對(duì)八禮四儀掌握情況優(yōu)秀的人數(shù);

3)小明所在班級(jí)共有40人,他們?nèi)繀⒓恿诉@次測試,平均分為7.8分.小明的測試成績是8分,小明說,我的測試成績?cè)诎嗉?jí)中等偏上,你同意他的觀點(diǎn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)有研發(fā)、管理和操作三個(gè)小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是(

A.團(tuán)隊(duì)平均日工資不變B.團(tuán)隊(duì)日工資的方差不變

C.團(tuán)隊(duì)日工資的中位數(shù)不變D.團(tuán)隊(duì)日工資的極差不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能分解成兩個(gè)一次因式的積,則整數(shù)k=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,將AMPBPQ分別沿PMPQ折疊(APAM),點(diǎn)A和點(diǎn)B都與點(diǎn)E重合;再將CQD沿DQ折疊,點(diǎn)C落在線段EQ上點(diǎn)F處.

1)判斷AMP,BPQ,CQDFDM中有哪幾對(duì)相似三角形?(不需說明理由)

2)如果AM1sinDMF,求AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案