【題目】在數(shù)軸上,把表示數(shù)1的點(diǎn)稱為基準(zhǔn)點(diǎn),記作點(diǎn). 對(duì)于兩個(gè)不同的MN,若點(diǎn)M、點(diǎn)N到點(diǎn)的距離相等,則稱點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn). 例如:圖中,點(diǎn)M表示數(shù),點(diǎn)N表示數(shù)3,它們與基準(zhǔn)點(diǎn)的距離都是2個(gè)單位長(zhǎng)度,點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn).

1)已知點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn).

a=0,則b= ;若,則b= ;

用含a的式子表示b,則b= ;

2)對(duì)點(diǎn)A進(jìn)行如下操作:先把點(diǎn)A表示的數(shù)乘以,再把所得數(shù)表示的點(diǎn)沿著數(shù)軸向左移動(dòng)3個(gè)單位長(zhǎng)度得到點(diǎn)B. 若點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn),則點(diǎn)A表示的數(shù)是 ;

3)點(diǎn)P在點(diǎn)Q的左邊,點(diǎn)P與點(diǎn)Q之間的距離為8個(gè)單位長(zhǎng)度.對(duì)P、Q兩點(diǎn)做如下操作:點(diǎn)P沿?cái)?shù)軸向右移動(dòng)kk>0)個(gè)單位長(zhǎng)度得到, 的基準(zhǔn)變換點(diǎn),點(diǎn)沿?cái)?shù)軸向右移動(dòng)k個(gè)單位長(zhǎng)度得到, 的基準(zhǔn)變換點(diǎn),……,依此順序不斷地重復(fù),得到, ,, . Q的基準(zhǔn)變換點(diǎn),將數(shù)軸沿原點(diǎn)對(duì)折后的落點(diǎn)為 的基準(zhǔn)變換點(diǎn), 將數(shù)軸沿原點(diǎn)對(duì)折后的落點(diǎn)為,……,依此順序不斷地重復(fù),得到, , .若無(wú)論k為何值, 兩點(diǎn)間的距離都是4,則n= .

【答案】12,-2;;(2;(3412.

【解析】1①根據(jù)互為基準(zhǔn)變換點(diǎn)的定義可得出a+b=2,代入數(shù)據(jù)即可得出結(jié)論;②根據(jù)a+b=2,變換后即可得出結(jié)論;

2)設(shè)點(diǎn)A表示的數(shù)為x,根據(jù)點(diǎn)A的運(yùn)動(dòng)找出點(diǎn)B,結(jié)合互為基準(zhǔn)變換點(diǎn)的定義即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;

3)根據(jù)點(diǎn)Pn與點(diǎn)Qn的變化找出變化規(guī)律P4n=m、Q4n=m+8-4n,再根據(jù)兩點(diǎn)間的距離公式即可得出關(guān)于n的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論.

解:(1)①∵點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn),

a+b=2.

當(dāng)a=0時(shí),b=2;當(dāng)a=4時(shí),b=2.

故答案為:2;2.

②∵a+b=2

b=2a.

故答案為:2a.

(2)設(shè)點(diǎn)A表示的數(shù)為x,

根據(jù)題意得: x3+x=2

解得:x=.

故答案為: .

(3)設(shè)點(diǎn)P表示的數(shù)為m,則點(diǎn)Q表示的數(shù)為m+8,

由題意可知:P1表示的數(shù)為m+k,P2表示的數(shù)為2(m+k),P3表示的數(shù)為2m,P4表示的數(shù)為m,P5表示的數(shù)為m+k,

Q1表示的數(shù)為m6,Q2表示的數(shù)為m+6,Q3表示的數(shù)為m4,Q4表示的數(shù)為m+4,Q5表示的數(shù)為m2,Q6表示的數(shù)為m+2,,

P4n=m,Q4n=m+84n.

|m(m+84n)|=4,即|84n|=4,

解得:4n=44n=12.

故答案為:412.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40

(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為11,點(diǎn)B對(duì)應(yīng)的數(shù)為b,點(diǎn)C在點(diǎn)B右側(cè),長(zhǎng)度為3個(gè)單位的線段BC在數(shù)軸上移動(dòng),

1)如圖1,當(dāng)線段BCO,A兩點(diǎn)之間移動(dòng)到某一位置時(shí),恰好滿足線段AC=OB,求此時(shí)b的值;

2)線段BC在數(shù)軸上沿射線AO方向移動(dòng)的過(guò)程中,是否存在ACOB=AB?若存在,求此時(shí)滿足條件的b的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接“國(guó)家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買A、B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元;購(gòu)買2個(gè)A型垃圾箱比購(gòu)買3個(gè)B型垃圾箱少用160元.
(1)每個(gè)A型垃圾箱和B型垃圾箱各多少元?
(2)現(xiàn)需要購(gòu)買A,B兩種型號(hào)的垃圾箱共300個(gè),分別由甲、乙兩人進(jìn)行安裝,要求在12天內(nèi)完成(兩人同時(shí)進(jìn)行安裝).已知甲負(fù)責(zé)A型垃圾箱的安裝,每天可以安裝15個(gè),乙負(fù)責(zé)B型垃圾箱的安裝,每天可以安裝20個(gè),生產(chǎn)廠家表示若購(gòu)買A型垃圾箱不少于150個(gè)時(shí),該型號(hào)的產(chǎn)品可以打九折;若購(gòu)買B型垃圾箱超過(guò)150個(gè)時(shí),該型號(hào)的產(chǎn)品可以打八折,若既能在規(guī)定時(shí)間內(nèi)完成任務(wù),費(fèi)用又最低,應(yīng)購(gòu)買A型和B型垃圾箱各多少個(gè)?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.2 +3 =5
B.( )(1﹣ )=1
C.(xy)1 xy)2= xy
D.﹣(﹣a)4÷a2=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的運(yùn)算流程中,

(1)若輸入的數(shù)x=﹣4,則輸出的數(shù)y=   ;

(2)若輸出的數(shù)y=5,則輸入的數(shù)x=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知5臺(tái)A型機(jī)器一天的產(chǎn)品裝滿8箱后還剩4個(gè),7臺(tái)B型機(jī)器一天的產(chǎn)品裝滿11箱后還剩1個(gè),每臺(tái)A型機(jī)器比B型機(jī)器一天多生產(chǎn)1個(gè)產(chǎn)品.

(1)求每箱裝多少個(gè)產(chǎn)品.

(2)3臺(tái)A型機(jī)器和2臺(tái)B型機(jī)器一天能生產(chǎn)多少個(gè)產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上,A、B兩點(diǎn)表示的數(shù)a,b滿足|a﹣6|+(b+12)2=0

(1)a=   ,b=   ;

(2)若小球MA點(diǎn)向負(fù)半軸運(yùn)動(dòng)、小球NB點(diǎn)向正半軸運(yùn)動(dòng),兩球同時(shí)出發(fā),小球M運(yùn)動(dòng)的速度為每秒2個(gè)單位,當(dāng)M運(yùn)動(dòng)到OB的中點(diǎn)時(shí),N點(diǎn)也同時(shí)運(yùn)動(dòng)到OA的中點(diǎn),則小球N的速度是每秒   個(gè)單位;

(3)若小球M、N保持(2)中的速度,分別從AB兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)   秒后兩個(gè)小球相距兩個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬(wàn)元,可變成本逐年增長(zhǎng),已知該養(yǎng)殖戶第一年的可變成本為2.6萬(wàn)元,設(shè)可變成本平均每年增長(zhǎng)的百分率為

1)用含x的代數(shù)式表示低3年的可變成本為 萬(wàn)元;

2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬(wàn)元,求可變成本平均每年的增長(zhǎng)百分率x.

查看答案和解析>>

同步練習(xí)冊(cè)答案