【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊含的規(guī)律,并順利地求出了前三個方程的解第①個方程的解為;第②個方程的解為;第③個方程的解為.若n為正整數(shù),且關(guān)于x的方程的一個解是,則n的值等于____________.

【答案】n的值是109

【解析】

根據(jù)已知分式方程的變化規(guī)律求出該方程的解,再利用已知解題方法得出方程的解.

由①=1+2x=1x=2;

由②=2+3x=2x=3;

由③=3+4x=3x=4,

可得第n個方程為:x+=2n+1,

解得:x=nx=n+1,

變形,(x+3)+=2n+1,

x+3=nx+3=n+1

∴方程的解是x=n-3,或x=n-2,

當(dāng)n-3=7時,n=10

當(dāng)n-2=7時,n=9

n的值是109

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點上,點外一點.于點.連接于點,作于點,交于點,連接

1)求證:的切線;

2)若,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象如圖所示,對稱軸為直線x=﹣1,經(jīng)過點(0,1)有以下結(jié)論:a+b+c0b24ac0;abc0;④4a2b+c0ca1.其中所有正確結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用周長為米的籬笆圍成.已知墻長(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.

1)若苗圃園的面積為平方米,求的值;

2)若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

問題情境:在一次綜合實踐活動課上,同學(xué)們以菱形為對象,研究菱形旋轉(zhuǎn)中的問題:

已知,在菱形ABCD中,BD為對角線,,AB=4,將菱形ABCD繞頂點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位°).旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動中提出下列問題,請你幫他們解決.

觀察證明:

1)如圖1,若旋轉(zhuǎn)角,BD相交于點M,AB相交于點N.請說明線段DM的數(shù)量關(guān)系;

操作計算:

2)如圖2,連接,菱形ABCD旋轉(zhuǎn)的過程中,當(dāng)AB互相垂直時,的長為 ;

3)如圖3,若旋轉(zhuǎn)角,分別連接,,過點A分別作,,連接EF,菱形ABCD旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長度不變的線段EF,請求出EF長度;

操作探究:

4)如圖4,在(3)的條件下,請判斷以,,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,過,交,過,交,連結(jié)、

求證:;

當(dāng)四邊形滿足什么條件時,四邊形是菱形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°AB5cm,BC3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線ACBA運動,設(shè)運動時間為t秒(t0).

1)若點PAC上,且滿足PAPB時,求出此時t的值;

2)若點P恰好在∠BAC的角平分線上,求t的值;

3)在運動過程中,直接寫出當(dāng)t為何值時,BCP為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,分別交直線、于點、

1)如圖1,當(dāng)時,求證:;

2)如圖2,當(dāng)時,線段、、之間有何數(shù)量關(guān)系,證明你的結(jié)論;

3)如圖3,當(dāng)時,旋轉(zhuǎn),問線段之間有何數(shù)量關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想

如圖①點B、A、C在同一條直線上,DBBC,ECBC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;

(2)問題解決

如圖②,在RtABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰RtDAC,連結(jié)BD,求BD的長;

(3)拓展延伸

如圖③,在四邊形ABCD中,∠ABC=ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.

查看答案和解析>>

同步練習(xí)冊答案